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Geometric routing is an alternative to traditional routing
algorithms in which traffic is no longer forwarded using
lookup tables, but using coordinates in an embedding
of the underlying network. A major downside of current
geometric routing algorithms is their inability to handle
network failures in a graceful manner. Moreover, they
cannot deal with dynamic graph topologies. This arti-
cle presents a geometric routing scheme that uses an
embedding based on a spanning forest. Allowing nodes
to select the optimal spanning tree leads to both shorter
paths and natural traffic redirection in case of network
failures. By constructing the forest in such a way that
its disconnected components have low redundancy, their
coverage is maximized. Results show that this system
is able to operate gracefully in severe failure scenar-
ios, without any form of path protection or restoration.
By means of an embedding regeneration procedure, the
routing scheme is able to continuously adapt to an alter-
ing network topology. This geometric routing algorithm
effectively combines two key objectives, namely low path
stretch and high robustness. © 2015 Wiley Periodicals, Inc.
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1. INTRODUCTION

In geometric routing, nodes are matched with points in a
particular mathematical space, a so-called graph embedding.
By calculating distances within the embedding space, traffic
is steered toward its destination along a distance-decreasing
path. This avoids the need of large lookup tables, as is the
case in traditional routing schemes. As in geometric routing
a node only has to store local coordinates, rather than the full
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network state, it is scalable by its very nature. As such, it does
not deal with computational overhead as a result of storing
and inspecting lookup tables. A first disadvantage, however,
is its lack of robustness because the underlying embedding
can lose its greedy (also see Definition 2) characteristics when
network failures occur. A second disadvantage is that the
embedding cannot keep up with a dynamic graph topology. In
both cases, it cannot be guaranteed that a distance-decreasing
path toward the destination (also see Definition 1) exists.
Figure 1 shows a routing void for a graph embedded in the
2-D Euclidean plane.

Originally, geometric routing was introduced as a way
of routing in unit-disk graphs,1 an accurate model for ad
hoc and wireless sensor networks [1]. Recently, it has been
shown that this style of routing can also be used in scale-free
graphs,2 which are a better model for wired networks such as
the Internet [2]. In such large-scale communication networks
traffic redirection in case of failures is essential. The question
of how to combine low path stretch3 with routing robustness
toward failures and dynamic topologies, however, has yet to
be solved.

This article extends our work [3, 4] by further exploring
robustness in geometric routing. We present a geometric rout-
ing algorithm called Greedy Forest Routing (GFR) using an
embedding based on a spanning forest. GFR is by its nature
very robust toward network failures by maximizing the cov-
erage of the embedding component, while attaining low path
stretch. Furthermore, an embedding regeneration procedure
has been designed to deal with a continuously changing net-
work topology. Moreover, we show that adding a backup
routing mechanism allows for 100% routing success rate,
even in extreme network failure scenarios. Although we have
designed GFR specifically for scale-free networks, it is gen-
eral enough to be applied to other network topologies as well.

1 A graph G = (V , E) is a unit-disk graph when ∀u, v ∈ V : v ∈ N(u) ⇔
δ(u, v) ≤ 1 in case G is embedded into a Euclidean space, with δ the
Euclidean distance.
2 In scale-free networks the degree distribution follows a power-law P(d) ∼
d−γ with a parameter γ ∈ R

+ and d the vertex degree.
3 The stretch of a path is its length, as a number of hops, divided by the
shortest path length between its source and destination nodes.

NETWORKS—2015—DOI 10.1002/net



FIG. 1. Illustration of a routing void for a graph embedded into the 2-D
Euclidean plane. The gray dashed arc, which represents points equidistant
to t, indicates that both a and b are farther away from t than s itself. Hence,
s cannot route to t along a distance-decreasing path using the 2-D Euclidean
distance. The dashed horizontal lines show that using the 1-D Euclidean
distance along the vertical axis allows s to route to t through either a or b,
without encountering a local distance minimum.

2. RELATED WORK

Although most geometric routing algorithms target unit-
disk graphs rather than scale-free graphs, their robustness
techniques are still worth investigating. A basic concept of
routing errors in geometric routing are so-called voids. These
are nodes reached by a packet being forwarded for which no
neighbor exists that has a lower distance to the destination
than the node itself. Several techniques exists to avoid having
to drop the packet at that specific point along the routing path.
Many of them make use of a face routing-like construct [5].
But, these techniques require the underlying network to be
a unit-disk graph and are hence not applicable to scale-free
networks due to their different graph properties. Sahhaf et
al. [6] propose a backup strategy for geometric routing based
on a greedy hyperbolic embedding by searching alternative
paths for fast traffic rerouting, applicable to a wide variety of
networks. Their other work presents the use of a backup tree
to deal with single failures [7]. Our work here differs from
the former as it improves routing robustness by (i) allowing
for natural traffic rerouting, by means of a multidimensional
embedding, and (ii) using a spanning forest for which the tree
redundancy has been heuristically minimized.

A different fault-tolerance strategy, not relying on prede-
termined alternative paths, is gravity-pressure routing [8].
Upon encountering routing voids, a potential function is
applied to the routed packet. This causes the packet to be
steered away from the void location. The main advantage of
this technique is that its reliability can be proven. A severe
disadvantage, however, is the increased stretch by steering the
packet around the void. Other techniques focus on creating
minimally overlapping trees, however, most are theoretical
by nature and are hard to implement in a realistic distributed
scenario, or are restricted by a fixed number of trees [9–11].
Moreover, these algorithms do not construct embeddings with
the geometric routing paradigm in mind. Our approach uses
a forest construction mechanism that reduces redundancy in
a heuristic fashion. Herein, coordinates are assigned paral-
lelly with as goal robust geometric routing. A recent work on

geometric routing in complex networks is the Practical Iso-
metric Embedding Protocol [12] in which Herzen et al. focus
specifically on the scalability of their routing algorithm. Tang
et al. [13] also use multiple trees for geometric routing, but
they do not focus on, or test for, reliability. Moreover, multi-
ple trees are constructed in a breadth-first manner rather than
aiming for maximal coverage. Contrary to their approach,
our method is able to combine high robustness with low path
stretch.

3. THEORETICAL FOUNDATION

This section sets forth the theoretical foundation of geo-
metric routing. First, we explain key concepts regarding
graph embeddings. Next, we elaborate on fault-tolerance in
geometric routing. Then we investigate how using a multi-
embedding can increase routing robustness. Finally, we give
a complexity analysis of the embeddings used in GFR.

3.1. Graph Embeddings

In this section a theoretical foundation for the GFR algo-
rithm is built based on the work of Chávez et al. [14] and
Korman et al. [15]. Geometric routing systems make use
of a graph embedding. Such an embedding is a mapping
between vertices of a graph and a particular mathematical
space, formally defined by the following definition.

Definition 1. Let S be a set and δ a metric function over S.
Let G = (V , E) be a graph, then an embedding of G into S is
a mapping f : V → S such that ∀u, v ∈ V : u �= v ⇔ f (u) �=
f (v) [16].

To guarantee a 100% routing delivery success rate a greedy
graph embedding is required. This means that for every two
non-neighbor vertices, there exists a third vertex for which
the distance to either of these two former vertices is lower
than the distance between them. This is formally defined by
the following definition.

Definition 2. A greedy embedding of a graph G = (V , E)

into a metric space (S, δ) is a mapping f : V → S with
the following property: for every pair of distinct vertices
u, w ∈ V there exists a vertex v ∈ V adjacent to u such
that δ(f (v), f (w)) < δ(f (u), f (w)). [17]

Herein, a metric space is the double formed by a space
and a corresponding distance function, more formally defined
by Definition 3. This metric space is used to steer packets
toward their target by following a distance-decreasing path,
as mentioned in the introduction.

Definition 3. For a set S and a function δ : S × S → R

such that the following conditions hold ∀u, v, w ∈ S:

1. δ(u, v) ≥ 0 ∧ δ(u, v) = 0 ⇔ u = v
2. δ(u, v) = δ(v, u)

3. δ(u, w) ≤ δ(u, v) + δ(v, w)
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FIG. 2. Graph embeddings illustrated: Shortcuts, labeling, redundancy.

Then δ is called a metric and the double (S, δ) is called a
metric space.

In this work, a spanning tree T = (V , E′) of the underlying
network G = (V , E) is used to generate a graph embedding.
This embedding makes use of a vertex labeling procedure
[15] and a distance function representing the shortest path
length in T [14]. Herein, the embedding target space S is
denoted as the tree space T. This tree space is defined as

T =
⋃
n∈N

((0)�N
n), (1)

in which the function (�) : N
m × N

n → N
m+n represents

the concatenation of two tuples. The labels assigned by the
labeling procedure (see Section 5) are now interpreted as
coordinates in T. These coordinates form a greedy embedding
[14] which is denoted as T . Therefore each vertex v ∈ V cor-
responds to a point in T identified by the coordinates T (v).4

An illustration of this embedding can be found in Figure 2a.
The distance function δ is defined as

δ(u, v) = |u| + |v| − 2|φ(u, v)|, (2)

with φ : N
n ×N

m → N
∗ a function that generates the largest

common prefix of two tuples; |u| represents the length of
the coordinate tuple of vertex u. This results in a distance
function δ : T × T → R

+ that, together with the space
T, forms the metric space (T, δ) (the properties of a metric
space can easily be proven). This metric space can now be
used according to the principles of geometric routing. This
means that every vertex is aware of the coordinates of its
neighborhood and the destination coordinates are encoded in
the packet header. As such, each node tries to forward a packet
along a distance-decreasing path to the destination based on
this header.

4 Instead of writing T (u) we will make no distinction between the point to
which a vector is mapped in its embedding space and the vertex itself. The
exact meaning should be clear from the context.

3.2. Fault-Tolerance

In this section, we analyze fault-tolerance in geometric
routing, the capability of handling node or link failures. Link
failures are defined as any link state in which the link is no
longer capable of transmitting data between its endpoints. A
node failure is defined as the inability of a node to process
packets correctly. Assume a network modeled by a graph G =
(V , E) with an embedding T into T, induced by a spanning
tree T = (V , E′) with E′ ⊆ E. Within this model, two types
of link failures can be distinguished:

1. A link e ∈ E fails for which e /∈ E′ holds, therefore T
does not become disconnected.

2. A link e ∈ E fails for which e ∈ E′ holds, as such T
becomes disconnected.

The first type of link failures does not critically affect
routing in a negative way. Packet delivery is still guaranteed
because e is a shortcut link (see Figs. 3a and 2a), although the
stretch and load balancing behavior may worsen. In contrast,
the second kind of failure is critical. Now, packet delivery can
be obstructed for particular source-destination pairs, because
the underlying embedding may lose its greedy property (see
Fig. 3b). Node failures can also be divided into two classes:

1. A node v ∈ V fails which is a leaf node of T , thus T does
not become disconnected.

2. A node v ∈ V fails which is not a leaf node of T , therefore
T becomes disconnected.

In case a leaf node fails, no harm is done. Of course this
prevents the node from becoming the source or destination
of any path, but we ignore this trivial case. The failed node
will never be a part of the sole path between two other nodes.
Nonleaf nodes can, however, be critical transit nodes for net-
work traffic flows. This can be explained as follows. In case
no shortcut exists between two disjoint subtrees, all traffic has
to be routed along their common ancestor node a (see Fig.
3a). Therefore, if a fails, all traffic between these two subtrees
will encounter a void at a neighbor of a. However, due to the
likelihood of the existence of shortcut links, negative effects
of such node failures are diminished, but no guarantees can
be made.

3.3. Increasing Fault-Tolerance by means of a
Multiembedding

A first step toward increased fault-tolerance is the use
of k spanning trees Ti = (V , E′

i) with for any i ∈
{0, 1, . . . , k − 1} : E′

i ⊆ E, to form k greedy embeddings
of G into T, rather than only one [13]. These different greedy
embeddings are denoted as Ti. The notation δ is now used to
denote the k-tuple representing the concatenation of the dif-
ferent distances in the k embeddings, thus δ = (δ0, . . . , δk−1).
Herein, δi represents the tree space distance for the i th embed-
ding Ti. Link or node failures must now disconnect all of the
embedding-inducing trees Ti = (V , E′

i) to certainly obstruct
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FIG. 3. Possible failure scenarios for an embedding into T: Shortcut and critical links. [Color figure can be
viewed in the online issue, which is available at wileyonlinelibrary.com.]

a geometric routing algorithm. These link and node failures
may once more be of different types:

1. A link e /∈ ⋂
0≤i<k E′

i fails, thus only a fraction m of all
trees Ti become disconnected.

2. A link e ∈ ⋂
0≤i<k E′

i fails, thus all k trees Ti become
disconnected.

3. A node v /∈ ⋂
0≤i<k V (i) fails with V (i) the set of nonleaf

nodes of tree Ti. Only a fraction m of the trees Ti becomes
disconnected.

4. A node v ∈ ⋂
0≤i<k V (i) fails. Now all k trees Ti become

disconnected.

In the first and the third failure types, geometric routing is
still theoretically possible due to the existence of a distance-
decreasing path between every source-destination pair in the
remaining (k−m) embeddings. To illustrate with an example
(see Fig. 2b): Link (h, y) is a critical parent–child link in
embedding T2 but is a nonessential shortcut link in T1. The
same holds for the network nodes: Nonleaf node y in T2 is
a leaf node in T1. If (h, y) or y fails, routing in T2 may fail
because T2 loses its greedy property, but it is still guaranteed
in T1.

In case two and four, routing once more cannot be guar-
anteed. Therefore, to ascertain a 100% success rate, a backup
mechanism is required, as will be explained in Section 3.3.
However, as more embeddings are used, the chances of a link
failure disrupting each of the embeddings becomes lower.

Another efficient way to increase routing robustness, with-
out adding complexity to the routing forwarding layer, is
increasing the number of viable alternative shortcut links.
For this, the spanning tree creation mechanism should mini-
mize the tree redundancy. With tree redundancy the overlap
of different spanning trees in the same network is meant. For
example, when two trees Ti = (V , E′) and Tj = (V , E′′) have
a maximum redundancy, they completely overlap, meaning
that E′ = E′′. Therefore, there is no advantage in using them
both for routing purposes as they will lead to the same set of
coordinates, as well as the same set of shortcut links. When
these two trees are said to have low redundancy, the set E′∩E′′
is small. This principle is illustrated in Figure 2b in which
two trees try to use different edges of the graph to avoid over-
lap. High tree redundancy should be avoided because it leads
to low fault-tolerance: A failing link which happens to be a

parent-child link for a large fraction of the forest is likely to
cause routing voids.5 How to achieve low tree redundancy is
explained in Section 5.

3.4. Embedding Complexity Analysis

According to the previously explained embedding theory,
each child of a vertex v ∈ V is labeled with a number in
{0, . . . , (dG(v) − 1)} with dG(v) the degree of v in a graph G.
The root node enjoys a special treatment and gets assigned the
coordinate (0). Assuming an underlying spanning tree T =
(V , E′) of G = (V , E), then dG(v) is at most (|V |−1). There-
fore the binary representation has a complexity O(log |V |)
[15]. A balanced k-regular tree with k > 2 has a depth com-
plexity of O(log |V |) and the coordinate lengths can be at
most equal to depth of the tree. From this follows that every
coordinate tuple can be represented with at most O(log2|V |)
bits in such a tree. This polylogarithmic complexity in |V |
means that the coordinate representations are succinct [18].
Scale-free networks have a diameter d ∼ log(log |V |) which
means that in the worst-case scenario (i.e., when the root
node has a distance to another node equal to the diameter d),
using a minimal-depth tree building algorithm such breadth-
first mode (BFM) (see Section 5), the tree depth is at most
equal to the network diameter [19]. Thus the complexity of
the tuples becomes O(log(log |V |)×log |V |). However, when
taking into account the most general scenario, a network can
have a diameter that is nearly equal to the number of vertices
in the network, namely (|V | − 1). In this worst-case scenario
(with a worst-case tree depth) the binary storage complexity
becomes O(|V | × log |V |).

4. GREEDY FOREST ROUTING

In this section, the theoretical foundation presented in
Section 3 will be combined with a multiembedding, form-
ing GFR. A straightforward way of routing with multiple
embeddings is to allow a node to freely alternate between
the different embeddings, due to their individual greediness.
However, this naive forwarding mechanism lacks reliabil-
ity as routing cycles may be introduced. Routing along a

5 Recall that routing voids are nodes that are unable to forward a packet
because there exists no distance-decreasing neighbor.
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FIG. 4. Naive routing example with multiple embeddings that leads to a
cycle. [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

distance-decreasing path in Ti may increase the distance in a
different embedding Tj. At a certain vertex along the routing
path, the packet may be sent back to its origin, routing the
packet along a cycle, as illustrated by the following example.

Example. To illustrate what happens when routing naively
with multiple embeddings, a fictional example is given for a
multiembedding consisting of three embeddings, thus k = 3.
This is depicted in Figure 4. Assume a source node s and a
destination node d for which δ(s, d) = (9, 5, 7). This means
that the δ-distance is 9 in embedding T0, 5 in T1, and 7 in T2.
When routing naively the following scenario can occur:

• δ(n1, d) = (8, 4, 7), s, the source, decides to route to n1 in
embedding T0 because δ0 decreases from 9 to 8.

• δ(n2, d) = (3, 6, 4), n1 decides to route to n2 in embedding T2

because δ2 decreases from 7 to 4. However, at the same time
the distance in embedding T1 increases from 4 to 6.

• δ(n3, d) = (6, 5, 7), n2 decides to route to n3 in embedding T1

because δ1 decreases from 6 to 5. Notice that the distance in
embedding T2 increases from 4 to 7 and that the distance in
T0 increases from 3 to 6.

• δ(n1, d) = (8, 4, 7), n3 decides to route to n1 in embedding T1

because δ1 decreases from 5 to 4.

In this scenario a cycle has been introduced because
although the packet is routed greedily in each embedding
individually, this does not hold for their aggregation.

Cycles can be avoided by requiring that each vertex along
the routing path decreases its minimum distance (over the
k embeddings) to the destination. This way of working is
similar to the tree cover based geographic routing (TCGR)
mechanism [13]. In our work a new distance function ε :
T

k × T
k → R

+ is defined as

ε(u, v) = min
0≤i<k

{δi(u, v)} with u, v ∈ V . (3)

The k embeddings into T can now be treated as a single
k-dimensional greedy6 embedding into T

k . As such, the
principles of geometric routing can be respected using the
semimetric space (Tk , ε). This double cannot be regarded

6 Its greedy characteristics can easily be proven: When the minimum distance
of all the embeddings decreases, at least one embedding will reach a new
minimal distance δ(u, d) at the current node u for a destination d. Assume this
embedding is Ti, then there will exist a node v ∈ N(u) for which δi(v, d) <

δi(u, d) because Ti is a greedy embedding (see Definition 1).

FIG. 5. GFR example in which a cycle is avoided due to its ε-distance.
[Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

as a true metric space as the triangle-inequality no longer
holds (Definition 3, property 3), however, this is not necessary
for geometric routing. When forwarding, multiple neighbors
may have an equal ε-distance to the destination. In this case
a random choice is made among them. This ε-based routing
scheme, in combination with the embedding procedure pre-
sented in the next section, is called GFR. In the next example
we illustrate what happens when using GFR in the previous
scenario.

Example. Reusing the same scenario as before, a multiem-
bedding is used consisting of three embeddings, thus k = 3,
which is depicted in Figure 5. Assume a source node s and a
destination node d for which δ(s, d) = (9, 5, 7). This means
that the δ-distance is 9 in embedding T0, 5 in T1, and 7 in T2.
As such, based on Equation (3), ε(s, d) = min {9, 5, 7} = 5.
GFR avoids cycles as shown in the following scenario:

• δ(n1, d) = (8, 4, 7), s, the source, decides to route to n1

because ε(n1, d) = 4, which is lower than its previous value 5.
• δ(n2, d) = (3, 6, 4), n1 decides to route to n2 because

ε(n2, d) = 3, down from 4.
• δ(n3, d) = (6, 5, 7), n2 cannot rout route to n3 because

ε(n3, d) = 5, which is larger than 4. Therefore, GFR avoids
the cycle.

• δ(n′
3, d) = (2, 2, 3), n3 decides to route to n′

3 because
ε(n′

3, d) = 2, down from 3.

Contrary to the previous example, GFR avoids the cycle
because it uses the ε-distance, which leads to a greedy
embedding into (Tk , ε).

As some nodes can have a high number of neighbors
in scale-free graphs, the number of calculations needed for
forwarding decision making can be equally large. Now, the
router processing time for packet forwarding using GFR will
be examined. For each neighboring node, the distance in k
embeddings has to be calculated to generate the ε-distance,
after which the node with the minimal distance is identified.
When computing this in a sequential way, it takes a processing
time equal to

tproc(u) = kdG(u)tdist + log2(kdG(u))tcomp (4)

for every packet, for a node u ∈ V . In this equation, tcomp

represents the time required to compare two distances and
select the lowest one, leading to log2(kdG(u)) comparisons;
tdist stands for the time required to calculate a single distance
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FIG. 6. Schematic overview of router architecture: Routers can parallelize distance calculations for a destination
node d for each neighboring node n0, n1, . . . , nd−1. The comparison operation is the only sequential part. In this
figure we show only the calculations for a single embedding to avoid clutter, the extension toward a k-dimensional
multi-embedding can be done by duplicating the distance calculations k times for n0, . . . , nd−1 and adding them
parallelly to (a) and sequentially to (b).

FIG. 7. Overview of sequential and parallel processing steps in GFR forwarding. The shaded box represents the
δ-function based on Equation (2), which is calculated in parallel for every embedding Ti, while the dashed gray
box represents the distance function ε based on Equation (3), which is calculated for every neighbor ni, assuming
a destination node d.

between two points in the tree coordinate space; dG(u) repre-
sents the degree of node u; and k is the number of embeddings
used in the routing system. An advantage is, however, that the
routing system is naturally parallelizable. The system can be
broken down in two pieces: The distance calculation and the
computation to select the next node. The distance calcula-
tion can be performed in parallel as the calculations of the
different distances are not interdependent. The comparison
computation has to be done after the distance calculations,
assuming all distance calculations are equally fast. This pro-
cessing scheme is depicted in Figure 6. When computing the
distances in parallel, the total time becomes

tproc(u) = tdist + log2(kdG(u))tcomp. (5)

Herein, the term with tdist is not scaling with the number of
neighbors or the number of embeddings at all, which leads to
a constant complexity. The term with tcomp does scale how-
ever, but the task of comparing two values and extracting the
minimum is not computationally intensive.

Figure 7 shows the GFR calculations needed for forward-
ing, with its serial and parallel steps. The symbols used in the
figure are based on Equations (2) and (3). Although many cal-
culations are necessary, it can be noticed that they are very
parallelizable: All neighboring node cost values can be calcu-
lated independently. Note that in this figure we disregard the
random selection mechanism required when multiple nodes
have an equal cost value. For any neighbor, ε can be calcu-
lated in parallel by calculating every δ-value independently
for each embedding. Assume a node u has dG(u) neighbors,
and the embedding is k-dimensional, then δ has to be calcu-
lated kdG(u) times in parallel. The output value δp is then fed
to a minimum selection mechanism, obtaining ε. The node
for which this ε is minimal will become the next node along
the routing path to the destination. This architecture allows
for a highly efficient GFR routing forwarding procedure.

5. EMBEDDING CONSTRUCTION

In this section, the GFR graph embedding construc-
tion mechanism is described. By constructing the forest

6 NETWORKS—2015—DOI 10.1002/net



underlying the embedding in an intelligent manner, GFR can
be inherently robust toward network failures. A prerequi-
site for constructing this embedding is that each node has
a unique identification number, for example, this can be a
node’s MAC-address in a real network. This is needed for
having a deterministic solution to the election process. In
what follows, the identification number of a vertex v is called
its key and is denoted as K(v). The GFR tree construction pro-
cedure consists of two phases. First, a set of k distinct root
nodes

{
r(i)

}
are elected through an arbitrary election mech-

anism. Second, the spanning trees Ti are constructed along
with the corresponding greedy graph embeddings Ti. Here-
after we only explain the construction of a single T , multiple
embeddings are a trivial parallel extension. The embedding
procedure is based on the work of Chávez et al. [14] and Kor-
man et al. [15]. The major difference lies within the way the
tree is formed.

Initially, the root node r is assigned the coordinate set (0).
Next, it will send its coordinates to its neighbors N1(r).7 Fur-
thermore, each recipient is assigned a unique child number by
the sender (the parent). Upon receiving this message, nodes
compute their own coordinates and inform their neighbors
N2(r) with a similar message. In turn these will recursively
inform their neighbors Nj(r). An illustration is shown in
Figure 2a of Section 3.2. In case a node that already has
coordinates assigned to it receives a new coordinate assign-
ment message, it may react in different fashions, which are
called different tree construction modes:

• Breadth-first mode (BFM): Override the previous coordinate
tuple only if this leads to a tuple of lower length. This results
in a tree of minimal depth.

• Redundant mode (RM): Only override previous coordinates
when the cost function value of the new coordinates is lower.
This cost function is based on the coordinate tuple lengths and
the overlap of the spanning trees (tree redundancy), which is
explained later on.

• Breadth-first RM (BFRM): A hybrid mode combining BFM
and RM, constructing a minimal-depth tree while focusing on
minimizing tree overlap.

In BFM, coordinates are only overridden when the coor-
dinate tuple resulting from the received message has a lower
length than the current tuple. When the parent node has
acquired a new set of coordinates, the child node should also
be updated accordingly. As such, a tree of minimal depth is
built, rooted at r. An advantage of using BFM is that the intro-
duction of cycles is impossible. Its high tree redundancy is a
clear downside, as this leads to low robustness: If a link fails
which happens to be the link between parent and child for a
large fraction of the trees, this will likely cause routing voids.
To enhance reliability, a second mode has been developed
called RM. RM emphasizes low tree redundancy, leading to
high tree coverage. This is done by ensuring that every link
is an edge in approximately the same number of trees. For

7 Ni(u) represents the i-th hop neighbors of u.

this, a novel metric is introduced to measure the amount of
tree redundancy of the spanning trees inducing the different
embeddings. Every edge e ∈ E is part of a number of sets
E′

i for a number of different trees Ti = (V , E′
i). If minimal

redundancy is desired, the goal is to make this number more
or less equal for every edge in E of G = (V , E). Based on
this description of redundancy, a metric τ is defined by the
following definition.

Definition 4. Assume k spanning trees. Denote the number
of different sets E′

i , corresponding to Ti = (V , E′
i) with 0 ≤

i < k, that an edge e ∈ E in a graph G = (V , E) belongs to,
as n. The amount of tree redundancy, termed the τ -ratio, is
defined as the standard deviation σ(n) divided by the average
n̄ over all e ∈ E. This can be formulated as τ = σ(n)

n̄ .

A low τ -ratio indicates that the trees are spread evenly over
the network, while a high τ -ratio indicates that there is a huge
difference in the number of spanning trees a link is part of.
Also note that τ ≥ 0. To decrease the tree redundancy while
constructing the embedding, a cost function fi : V3 → R is
defined for each embedding Ti used:

fi(u, p, p′) = ηai(u) + βbi(u) + ci(u, p, p′) (6)

with η, β ∈ R adjustable parameters; ai, bi, and ci are cost
terms defined as

ai(u) = |u′| − |u|, (7)

bi(u) =
{

0 if ai(u) ≤ 0
|u′| − |u∗| if ai(u) > 0,

(8)

ci(u, p, p′) = |�(u, p′) − �(u) + 1| + |�(u, p) − �(u) − 1|
− (|�(u, p′) − �(u)| + |�(u, p) − �(u)|),

(9)

with u ∈ V also representing the current coordinates for
embedding Ti; u′ are the new coordinates for embedding Ti;
u∗ are the coordinates with the lowest length encountered so
far for embedding Ti; �(x, y) represents the number of trees
Ti that are making use of the edge (x, y) ∈ E; �(x) is the
average of �(x, y)∀y ∈ N(x); p is the current parent of u, and
p′ is the potential new parent.

Thus ai(u) indicates the decrease in length of the new coor-
dinates compared to the current coordinates of u, while bi(u)

represents the decrease in length of the coordinates under
consideration for node u when comparing them to the coor-
dinates with the lowest length ever assigned (and possible
overridden) to u. The cost term ci(u, p, p′) describes whether
the number of trees that each link e ∈ I(u)8 is part of equal-
izes or not (which is our goal, ensuring that every link is part
of an equal number of trees, to minimize τ ). In this cost term,
|�(u, p′) − �(u) + 1| describes the offset of the number of
trees link (u, p′) is part of versus the average of this value.

8 I(u) represents the set of incidents links of node u.
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This average is denoted as �(u), and is calculated over all
links in I(u). Furthermore, the term |�(u, p) − �(u) − 1| is
added. It describes the offset of the number of trees link (u, p)

is part of, when p is no longer a parent of u, versus the average
over the links I(u), denoted as �(u). The sum of these two
offsets is compared to the sum of the offsets without parent
replacement, which is (|�(u, p′)−�(u)|+|�(u, p)−�(u)|).
Therefore, ci describes whether overriding the coordinates
(accepting the new parent) will reduce the variance in the
total number of trees each link in I(u) is part of. Also note
that ci(u, p, p′) is bounded by −2 ≤ ci(u, p, p′) ≤ 2.

Algorithm 1 Tree construction, redundant mode (RM)

The graph embedding procedure in RM is described in
Algorithm 1. When growing a tree in RM, precautions have to
be taken to avoid the introduction of cycles, especially when
using low η-values in Equation (6), as nodes will then fre-
quently switch parents. The fact that now longer coordinates
may override shorter ones is the main reason for the pos-
sible introduction of cycles in the tree. This happens when
an ancestor node accepts new coordinates from one of its
descendants. As a result, the embedding Ti may no longer be
greedy. A solution at first glance is to check whether a receiv-
ing node is an ancestor of the sending node by checking if
|φ(u′, u)| �= |u| holds [see Equation (2)]. But even then it is

FIG. 8. Cycle introduction by faulty coordinate updates which results in
an endless loop of updates. The characters in the coordinate tuples represent
integers similar to Figure 2a. [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]

still possible to generate cycles as explained in Figure 8. To
counter this, every coordinate assignment packet also holds
information about the current path P up to the root in the
tree [e.g., (x, g, c, a) in Fig. 8a]. The key K(v) of every vertex
v ∈ P is recorded. If a node u receives a coordinate assign-
ment message, it will first check whether it is part of P by
examining if its own key is present in this set of recorded
keys. Only when u /∈ P it will consider accepting the new
coordinates. This mechanism is called cycle avoidance.

Nonetheless, even with the cycle avoidance active, cycles
may still be introduced due to the system’s distributed nature.
Therefore, a cycle resolution procedure is implemented,
shown in Algorithm 1 at lines 1 and 9. When a node receives
a coordinate message from its parent, it normally accepts
these new coordinates. However, when this packet already
has its own key in the P field, a cycle was introduced. For
example, in node c the P field will look like (a, c, g, x, c) in
Figure 8c. Hence, it is informed of the cycle 〈c, g, x, c〉. Next,
c will send on the coordinate message to its children to notify
them. Whenever a node detects a cycle, it searches for a new
parent among its neighbors that are not part of the current
cycle. This is done by querying a new parent p and asking
for its coordinates along with a new child number cp. After
the packet has traversed all nodes of the cycle, these will all
have had the opportunity to switch parent, thus resolving the
cycle.
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FIG. 9. Tree redundancy τ in function of the dimension k (the number of
embeddings) for different tree generation modes on a scale-free (see Section
7) graph with 500 nodes. [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]

The advantage of generating an embedding in RM is the
resulting low tree redundancy τ . However, it is very hard to
give an estimated upper bound on the embedding procedure
time due to the complex interactions of the cycle resolution
and avoidance mechanisms. Moreover, the coordinates will
be larger than when building a tree of minimal depth. There-
fore, a hybrid mechanism is established by combining BFM
with RM, called BFRM. Now, a tree of minimal depth is
combined with a cost function to minimize τ . In essence,
this comes down to assigning parameter values η > 2 and
β = 0 in Equation (6). BFM can easily be altered to BFRM
by allowing a coordinate assignment message to override
the current coordinates when the check (fi(v, p, u) < 0) is
true. Because of its breadth-first behavior, no cycle avoid-
ance or resolution is required, which greatly diminishes the
complexity of the embedding procedure. This stems from
the fact that a node can never increase its coordinate tuple
length. The tree redundancy of the different generation modes
in function of the number of trees generated k can be seen
in Figure 9. For RM, the values in Equation (6) are set to
η = 2

3 and β = 1
3 , which leads to good behavior (no

excessively deep trees in which lots of cycles have to be
resolved). From this it is clear that RM results in the low-
est redundancy τ , BFM has the highest τ and BFRM lies
somewhere in between. The relation between τ and fault-
tolerance, will be shown for the different construction modes
in Section 7.1.

Additionally, the difference between the coordinate
lengths of BFRM and RM are shown in Figure 10. Figures 10
and 9 are consistent with the theoretical analysis in Section
7.4: When comparing BFRM with RM it can be noticed
that RM indeed generates larger coordinates in favor of
less tree redundancy (lower τ ). The tradeoff made is thus
larger storage requirements in both the nodes and packet
headers, versus possibly higher robustness. Although the
median coordinate length of RM seems similar to BFRM, its
variance is much higher, leading to inconsistent coordinate
lengths.

6. ROBUSTNESS MECHANISMS

In this section, additional mechanisms for increasing
robustness of GFR are investigated. First, the fault-tolerance
of the geometric routing system is improved by adding a
backup routing mechanism to allow for a 100% success
rate in failure scenarios. Second, routing in dynamically
changing network topologies is researched. In particular, a
re-embedding strategy is laid out to counter routing failure
due to network alterations.

6.1. Backup Routing Mechanism

When routing without any sort of backup routing mecha-
nism, a packet traverses a path P based on a function that is
computed at every node u ∈ P as Equation (3) dictates. When
a node along the routing path can identify no viable next
neighbor, that is, no neighboring node has a lower distance
to the destination, the packet encounters a void. Although
using a forest embedding reduces the chances of such fail-
ures, they can still occur. Therefore, GFR is extended with
a backup routing mechanism. Upon encountering voids, the
whole neighborhood N(u) is investigated instead of just a sub-
set of nodes, denoted as S(u), for which ε decreases. Doing
this headlong, however, may cause some routing paths to
become cycles [8], thus prudence is prevalent.

The backup system becomes active upon encountering a
routing void, after which the keys of the visited nodes, along
with the number of times they are visited, are saved in the
header of the data packet being routed. To avoid cycles, each
node will inspect these visitation numbers. Each node will
now forward packets to the node with the lowest visitation
number out of all considered nodes. When multiple nodes
have an equal visitation number, the node with the lowest
ε-value is selected. Cvetkovski and Crovella [8] have proven
that such a mechanism is able to attain 100% routing suc-
cess rate even in severe failure scenarios. The algorithm is
described in Algorithms 2 and 3. When a packet encoun-
ters a void (and the backup system is not active), the current
ε-distance is saved in the packet header after which the
packet enters the backup mode, until a lower ε-distance is
encountered. This has much in common with the greedy- and
face-mode used by [1] in which also a backup mechanism
is used to escape voids. The effects of the backup routing
mechanism on stretch and success ratio in failure scenarios
will be tested in Section 7.3.

6.2. Changing Topology

The underlying network may have a dynamic topology
in which links are added or removed over time. This results
in the spanning trees, inducing the graph embeddings of the
GFR system, losing their connectivity because they do not
adapt to the dynamic topology. Consequentially, routing per-
formance deteriorates as time goes on, which can first be
witnessed by an increased stretch. Moreover, in case the net-
work is severely altered, even routing voids may occur. A
solution is to create new embeddings while traffic is being
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FIG. 10. Coordinate sizes in function of the embedding number for BFRM and RM for a scale-free graph with
500 nodes, by means of a boxplot. The dots represent the highest value attained. The x-axis depicts the embedding
number, while the y-axis depicts the coordinate sizes corresponding to this embedding.

Algorithm 2 Backup routing in case of failures Algorithm 3 selectNext() in Algorithm 2
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FIG. 11. The regeneration of two embeddings in a set of five embeddings,
thus k = 5 and n = 2. [Color figure can be viewed in the online issue, which
is available at wileyonlinelibrary.com.]

routed through the network, which ultimately replace older
ones. The solution proposed here enables nodes to initiate a
voting process, or a voting process is initiated with a certain
frequency, in which nodes decide whether or not a new span-
ning tree—and thus a new embedding—should be created.
If the voting is successful, the graph embedding procedure
as explained in Section 5 is initiated. An important property
that should hold is that as the network changes over time, the
chances of a passing vote should increase. The implemen-
tation details of this voting scheme is omitted in this work,
instead, we focus on its theoretical principles.

When using a k-dimensional tree space T
k , induced by k

spanning trees T0, T1, . . . , Tk−1, a new tree Tk is generated
accompanied by new coordinates. When the embedding gen-
eration procedure based on Tk has started at a point in time
t0, all nodes will wait a time �1 before they conclude that
the embedding procedure has ended. At this point t0 + �1

there exist (k + 1) embeddings. This can be generalized to
the creation of multiple spanning trees in parallel. If this is
the case, there might exist (k +n) embeddings at some point,
from which there are k active and n nonactive ones. This
procedure is illustrated in Figure 11. At a time t0 + �1 all
nodes will communicate their new sets of coordinates with
their neighborhood (Fig. 11b).

After some time �2 has passed, all nodes should know
the n new coordinate sets of their neighbors. Then after
the point (t0 + �1 + �2) in time, all nodes will discard n
of the old embeddings from the original working set and
exchange them with the newly created ones (Fig. 11c). All
nodes should be aware of the new coordinate sets within the
time period (�1 + �2) after the start of the generation of the
new embeddings, as hereafter the new coordinate sets will
be used for routing purposes. Note that every node has to
exchange the same set of embeddings. A potential issue could

be the requirement to frequently exchange embeddings in a
scenario where the network is highly dynamic. The effects of
using an embedding regeneration scheme on the stretch and
the success ratio of GFR will be investigated in Section 7.4.

7. RESULTS AND DISCUSSION

Experimental results are generated by a routing simulator
that continuously generates random source-destination host
pairs according to a uniform traffic matrix. Between these
pairs traffic is simulated by generating routing paths in a
multithreaded environment. All experiments are executed on
a High Performance Computer. The algorithms are tested
on different scale-free networks constructed according to the
Barabási-Albert model [20] which have a degree distribution
P(d) ∝ d−γ with γ = 2.2.

7.1. Robustness

This section evaluates the fault-tolerance of GFR. Based
on our previous theoretical analysis, we expect that multi-
ple embeddings will lower the chances of a network failure
disrupting each of them. Therefore, the routing system is
more likely to find a distance-decreasing neighbor to which
an incoming packet can be forwarded. Hence, GFR should be
more resilient to failures than geometric tree-based routing
using a single embedding, such as RTP [14].

In this section, we focus entirely on link failures, as node
failures lead to very similar results. In the following experi-
ment a number of links are removed from the network which
represent link failures. The number of links removed starts
at 0 and goes up by 20 in a step-wise fashion. When rep-
resenting the network by a graph G = (V , E), the highest
number of links that can be removed without disconnecting G
is (|E|−|V |+1). For every step in the number of links failed,
the experiment is repeated 100 times. At each of these 100
repetitions, 1000 random source-destination pairs are gener-
ated between which uniform traffic is simulated, leading to
105 simulated paths for each step. For each of these 1000
pairs, the average success ratio is monitored. The links are
removed with a probability

p(l) = exp

(
3

(
1 − dG(v)o

(dG(v) − 1)

))
, (10)

with v the vertex that has the lowest probability p(l) of both
vertices incident to l ∈ E and dG(v)o the original degree
of vertex v before removal of any links. This probability
ensures that the link failures are spread evenly across the
network. When dG(v) = dG(v)o (no incident links failed),
the failure probability p(l) goes to one, while it goes to zero
for dG(v) = 0 (nearly all incident links failed). Links are
removed according to the description above randomly for
each run of the experiment.

Figure 12 compares the routing success rate of GFR with
k = 15 to geometric tree-based routing with a single embed-
ding, namely RTP [14], exercised on a scale-free graph of 500
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FIG. 12. Fault-tolerance: The success ratio of GFR (k = 15, BRFM
embedding generation) is tested for a varying failure rate on a scale-free
graph of 500 nodes. Also RTP [14] in which only a single embedding is
used is evaluated. The shaded background represents the average success
ratio, plus and minus the standard deviation σ . [Color figure can be viewed
in the online issue, which is available at wileyonlinelibrary.com.]

nodes. GFR is able to attain a success rate over 97% when
30% of the removable links are removed, given a connected
network. This is a huge improvement over routing with a sin-
gle embedding where the success ratio quickly declines as the
number of failures increases, namely a success ratio less than
50% at a 30% failure rate. This empirically shows that GFR
is able to achieve high robustness without using any form of
path protection or restoration, as in the work of Sahhaf et al.
[6, 7], and Cvetkvoski and Crovella [8].

This inherent fault-tolerance can be explained by the avail-
ability of more embeddings, which causes more alternative
pathways to exist between source and destination. Therefore,
it is less likely that a routing void will occur, a situation in
which no new ε-decreasing neighbor can be found. From this
can be concluded that GFR is robust by its very nature, an
essential property in real large-scale networks where failures
are common.

Figure 13 shows how increasing the dimension k affects
GFR’s robustness at a constant link failure rate of 30%. In this
experiment, for each k value, 15 different runs are executed
in which 105 random source-destination pairs are generated
between which traffic is simulated. At low k-values, the suc-
cess ratio of GFR is low, which is consistent with Figure 12.
As k increases, so does the success ratio, until it converges
to 100% as k → +∞. This is consistent with more embed-
dings allowing for more alternative paths by which packets
are naturally rerouted to their destination.

The effect of the different graph embedding procedures, as
presented in Section 5, on the success ratio is shown in Figure
14. In this figure can be noticed that RM is more robust to
failures than BFM, while BFRM lies somewhere in between.
This indicates the correlation of tree redundancy (see Def-
inition 4) with robustness. The τ -ratios of the different
embedding modes can be seen in Figure 9 for varying values
of k. This result is important as the improved robustness does
not require any alteration of the routing forwarding layer. It
is entirely dependant on the initial embedding procedure.

FIG. 13. Success rate at a link failure rate of 30% for a varying dimension
k on a scale-free graph of 500 nodes. The embedding is generated according
to BRFM. The shaded background represents the average success ratio, plus
and minus the standard deviation σ . [Color figure can be viewed in the online
issue, which is available at wileyonlinelibrary.com.]

FIG. 14. Effect of the different graph embedding procedures on the robust-
ness of GFR ( k = 15) on a scale-free graph of 500 nodes. [Color figure can
be viewed in the online issue, which is available at wileyonlinelibrary.com.]

7.2. Path Stretch

As geometric routing does not guarantee shortest path
routing, we have to make sure that increasing fault-tolerance
in GFR does not lead to excessively long routing paths. In
this section GFR is analyzed regarding its average stretch ρ.
We define the stretch of a routing path between a source node
s and a destination node d as the path length, in number of
hops, divided by the length of a shortest path between s and d.

In Figure 15, the effect of changing the number of embed-
dings k (or the dimension of the space T

k) on the average
stretch ρ is depicted. For each k-value, 15 different runs are
executed for which 105 random source-destination pairs are
generated, between which traffic is simulated. This experi-
ment shows asymptotic behavior ρ → 1 as k → +∞. This
means that as k increases, GFR approximates shortest path
routing. A logical explanation for this is that having more
embeddings available allows for more routing freedom, as
a node has more embeddings to choose from when routing
packets. As a result, there is an increased chance that a com-
bination of embeddings will lead to a short path between
source and destination. Therefore, attaining a lower stretch
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FIG. 15. GFR with BFRM embedding generation: Average stretch ρ in
function of the dimension k of the embedding space T

k for scale-free graphs
of different sizes. [Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]

by increasing k goes hand in hand with higher fault-tolerance,
a highly advantageous situation.

Based on the experiments of Sections 7.1 and 7.2, we
recommend using GFR with BFRM embedding generation
due to its simplicity and its relatively low tree redundancy.
The dimension k of the embedding should be chosen high
enough to achieve both low stretch and high fault-tolerance.
However, how this parameter k can be estimated for unknown
graphs remains future work.

7.3. Backup Mechanism

In Figure 16, the difference in stretch and success ratio
between routing with and and without backup system (as
presented in Section 7.3) is shown. According to Cvetkovski
and Crovella [8], this type of backup system should obtain a
success ratio of 100% in all cases, which is empirically veri-
fied in Figure 16b for our routing scenario. Figure 16a shows
how failures affect routing stretch. It can be noticed that, as
the number of failed links increases, the stretch increases
simultaneously. When no backup mechanism is active, this
is explained by the lowered chances of having a neighbor
available that leads to a short path to the destination.

When the backup system is active, the increase in stretch
can be explained by, on the one hand, the omission of paths
with voids (which can be theorized as being +∞) in the
average stretch calculations, which biases the true stretch
of routing without backup system. Conversely, the stretch
increase can be explained by the fact that paths taken by the
backup mechanism are generally longer than the paths taken
by the default GFR system. This is caused by the inefficient
visitation scheme imposed by the backup algorithm, which
is required as the coordinates are no longer trustworthy.

Figure 17a shows the cumulative stretch distribution for
different link failure rates with the backup system active.
This shows that as the backup mechanism is used more often
(which happens when more links are defect), a larger fraction
of paths have a high stretch—the distribution seems to shift
to the right. This supports the fact that the backup routing

FIG. 16. Average stretch ρ and routing success ratio on a scale-free graph
of 500 nodes, in function of the percentage of failed links, with and without
the backup routing procedure active. The shaded background behind the
curves represents � ± σ�. [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]

mechanism reroutes traffic along paths that are longer than
paths generated by GFR in case of no failures. In Figure
17b the average stretch of the paths with the 1% highest
stretch values is depicted, in function of a varying number of
failed links. Here can also be noticed that the backup mech-
anism increases routing stretch, which is consistent with the
previous experimental results.

7.4. Embedding Regeneration Procedure

Real networks are subject to failures and node mobility,
resulting in a dynamic graph topology. However, the default
GFR system cannot deal with such a changing topology
because the underlying embedding loses its resemblance to
the network, that is, the forest which induces the coordinates
becomes disconnected and no longer spans the network. This
leads to an increased stretch and ultimately to routing voids.
To handle this, an embedding regeneration scheme has been
added to the baseline GFR algorithm, as presented in Section
7.2. By swapping out those embeddings that least resemble
the altered topology in favor of newer ones, this mechanisms
maintains steady routing performance over time.

To accurately test this regeneration scheme, we require
that the characteristics of the network remain constant while
swapping links. It is, however, nontrivial to keep network
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FIG. 17. Cumulative number of paths with a certain stretch ρ for different
failure ratios, as well as the stretch ρ99th of the 99th percentile with and with-
out backup system for a scale-free network of 500 nodes. [Color figure can
be viewed in the online issue, which is available at wileyonlinelibrary.com.]

characteristics stable in scale-free networks. As this exper-
iment’s only goal is to illustrate the effects of embedding
regeneration, the type of benchmark network does not matter.
Therefore, a random network of 500 nodes is used, because
its network properties will not be altered by random link per-
mutation. In the experiment random source-destination pairs
are generated and every 100 pairs one link is swapped, which
means its incident vertices are changed randomly. Every 104

generated paths, 30% of the 10 embeddings are regenerated
with the embedding mode set to RM.

Figure 18 shows the results: Not using any regeneration
scheme leads to a quick incline in average stretch as well as
a quick decline in success ratio. When a regeneration model
is used that regenerates 30% of the embeddings every 100
link permutations, it can be noticed that the stretch (Fig. 18a)
and success ratio (Fig. 18b) converge toward a stable point.
This allows the network to change indefinitely without dete-
rioration of the routing behavior. Contrary to the red (reg
avg) and green (no reg) line, the blue (reg) line shows the
stretch and success ratio after they have been reset at each
re-embedding. This better illustrates the true behavior of the
routing scheme in combination with the embedding regener-
ation procedure. At every re-embedding, a step in the stretch
and success ratio curve can be noticed. Hereafter, they both
worsen again, until the next re-embedding. By increasing the

FIG. 18. Embedding regeneration for 105 paths generated, while every 100
paths a link is randomly swapped in a random graph of 500 nodes. Every
104 paths, 30% of the embeddings are regenerated, which can noticed by
the saw-like trend (reg). Contrary to the red line (reg avg), which depicts the
total average value (stretch and success ratio), the blue line (reg) resets each
value at every embedding regeneration. Using no embedding regeneration
procedure (no reg) makes the routing system vulnerable to dynamic topolo-
gies. [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

re-embedding frequency it is possible to reduce the size of this
step, however, this also results in higher communication over-
head due to the coordinate assignment message exchanges.
To conclude, results indicate that our embedding regeneration
procedure can help in withstanding highly dynamic networks
with continuously changing topologies.

8. CONCLUSION

In this article a theoretical framework is built which serves
as the foundation of a geometric routing scheme called GFR.
GFR performs greedy routing based on a multidimensional
embedding induced by a spanning forest. Results show that
using an embedding construction procedure that maximizes
the forest’s network coverage, both routing robustness and
stretch are improved. The scheme is inherently robust toward
network failures without using any form of path protection
or restoration. It is capable of guaranteeing success ratios
as high as 97% at link failure rates of 30% in scale-free
networks.

Furthermore, the scheme can be extended with a backup
routing mechanism, ensuring a 100% routing success rate, as
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long as the network stays connected. Moreover, GFR is able to
continuously adapt to a dynamically changing graph topol-
ogy by means of a novel embedding regeneration scheme.
Its low router storage complexity makes GFR robust toward
network growth, while complexity analysis demonstrates the
efficiency of its forwarding layer.
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