
Rein Houthooft

Adaptive Geometric Routing for the Internet Backbone

Academiejaar 2013-2014
Faculteit Ingenieurswetenschappen en Architectuur
Voorzitter: prof. dr. ir. Daniël De Zutter
Vakgroep Informatietechnologie

Master in de ingenieurswetenschappen: computerwetenschappen
Masterproef ingediend tot het behalen van de academische graad van

Begeleiders: dr. Wouter Tavernier, Seyedeh Sahel Sahhaf
Promotoren: prof. dr. ir. Didier Colle, prof. dr. ir. Mario Pickavet

Rein Houthooft

Adaptive Geometric Routing for the Internet Backbone

Academiejaar 2013-2014
Faculteit Ingenieurswetenschappen en Architectuur
Voorzitter: prof. dr. ir. Daniël De Zutter
Vakgroep Informatietechnologie

Master in de ingenieurswetenschappen: computerwetenschappen
Masterproef ingediend tot het behalen van de academische graad van

Begeleiders: dr. Wouter Tavernier, Seyedeh Sahel Sahhaf
Promotoren: prof. dr. ir. Didier Colle, prof. dr. ir. Mario Pickavet

Acknowledgement

I would like to thank my promoters prof. dr. ir. Didier Colle and prof. dr. ir. Mario Pickavet for
the opportunity they gave me to work in this field of study for nearly a year. Furthermore many
thanks to my tutors Seyedeh Sahel Sahhaf and dr. Wouter Tavernier for guiding me throughout
the course of this work. I greatly appreciate the support and freedom they gave me in following
my own path of interest.

De auteur geeft de toelating deze masterproef voor consultatie beschikbaar te stellen en delen van
2de masterproef te kopiëren voor persoonlijk gebruik.
Elk ander gebruik valt onder de beperkingen van het auteursrecht, in het bijzonder met betrekking
tot de verplichting de bron uitdrukkelijk te vermelden bij het aanhalen van resultaten uit deze
masterproef.

The author gives permission to make this master dissertation available for consultation and to copy
parts of this master dissertation for personal use.
In the case of any other use, the limitations of the copyright have to be respected, in particular
with regard to the obligation to state expressly the source when quoting results from this master
dissertation.

Ghent, January 2014

Rein Houthooft

iv

v

Adaptive Geometric Routing for the Internet Backbone

Rein Houthooft

Promotoren: prof. dr. ir. Didier Colle, dr. ir. Mario Pickavet
Begeleiders: dr. Wouter Tavernier, Seyedeh Sahel Sahhaf

Masterproef ingediend tot het behalen van de academische graad van Master in de
ingenieurswetenschappen: computerwetenschappen

Vakgroep Informatietechnologie
Voorzitter: prof. dr. ir. Daniël De Zutter

Faculteit Ingenieurswetenschappen en Architectuur
Academiejaar 2013-2014

Keywords: geometric routing, load balancing, scale-free network, BGP,
fault-tolerance

Adaptive Geometric Routing for the Internet
Backbone

Rein Houthooft
Supervisors: Seyedeh Sahel Sahhaf, dr. Wouter Tavernier, prof. dr. ir. Didier Colle, prof. dr. ir. Mario Pickavet

Abstract—The application of geometric routing to scale-free
inter-AS topologies is investigated. The main contribution forms
a family of routing schemes, called Forest Routing, based on the
principles of geometric routing focusing on memory scalability
and natural load balancing. This is achieved by using an
aggregation of greedy embeddings along with a novel distance
function. Incorporating link load information in the forwarding
layer ensures load balancing behaviour, while still attaining a
short average path length. Furthermore the routing mechanisms
are highly resilient towards network failures and are as such able
to deal even with a severely deteriorated network.

Index Terms—geometric routing, load balancing, scale-free
network, fault-tolerance

I. INTRODUCTION

Currently traffic routing within the Internet backbone is
done by the Border Gateway Protocol (BGP). Though be-
ing a fundamental Internet protocol, it copes with several
issues. Due to the vast growth of the Internet, the number
of Autonomous Systems (ASs) is increasing steadily. This
poses great memory scalability problems for routers as the
number of BGP forwarding entries severely increases. This
is caused by every node being required to store a gigantic
amount of route information [1] [2]. Clearly BGP was simply
never built to withstand such a growth. Therefore a need exists
for alternative routing mechanisms that are scalable by nature.
Furthermore it would be beneficial to have desirable properties
such as load balancing behaviour and fault-tolerance.

In the last decade, geometric routing systems started emerg-
ing. Though they were originally designed for ad-hoc wireless
networks and wireless sensor networks (WSNs), researchers
have found that they are also applicable to wired networks
that. This entails a different approach as wired networks
are generally modelled as scale-free graphs rather than unit-
disk graphs, which act as a model for WSNs. Geometric
routing makes use of a graph embedding in which a graph
is embedded into a mathematical space. Herein every node of
the network is assigned a set of coordinates. Based on these
coordinates and a corresponding distance function, geometric
routing systems route packets closer to its destination by
following a distance-decreasing path.

The application of geometric routing to wired networks is
still relatively unexplored. An open question is achieving traf-
fic load balancing while still guaranteeing a short average path
length and a 100% packet delivery rate. This paper researches
how load balancing can be achieved using geometric routing.
The main contribution is a family of routing mechanisms
called Forest Routing (FR) which are able to achieve load
balancing, a low stretch and 100% delivery success rate while

being inherently resilient towards node and link failures. They
are applicable to a wide range of network types, but designed
with scale-free networks in mind.

II. RELATED WORK

Many geometric routing algorithms target UDGs rather
than scale-free networks. Hence these are difficult to apply
to the Internet AS-level topology. However, it is useful to
investigate what techniques are used to achieve load balancing
in geometric routing. In general load balancing mechanisms
can be divided into two classes: active and passive techniques.
Passive load balancing draws from the inherent structure of the
routing algorithm to spread traffic equally over the network.
Active load balancing on the other hand makes use of live
traffic information steer traffic away from hotspots. As a result
active load balancing techniques are able to adjust routing to
a changing traffic matrix.

Many load balancing techniques used in geometric routing
applied to WSNs aim at lowering the number of overloaded
nodes to avoid quick energy depletion due to their limited bat-
tery sizes. As such most load balancing research is focussed
on node load balancing rather than link load balancing. One
of such energy-driven systems is Geographical and Energy
Aware Routing [3]. This mechanism makes use of a 2D Eu-
clidean embedding and utilizes a forwarding decision heuristic
based on the current neighbouring nodes’ battery levels. As
traffic is guided towards nodes with more energy, this also
leads to node load balancing because the main source of
energy depletion is packet processing. [4] proposes a similar
approach. By only allowing nodes to use local neighbourhood
information, the routing scheme remains scalable. A more
advanced energy-based routing mechanism is Curve-Based
Greedy Routing [5]. Herein traffic is guided by a B-spline
which is calculated by the source node and stored in the
packet headers. By using a selection mechanism based on
the distance to this B-spline and the node energy level, nodes
have more freedom in making forwarding decisions than basic
greedy routing mechanisms. A feedback system is used such
that nodes may inquire the source node to recompute the used
B-spline to actively reroute traffic around hotspots.

LBLSP uses a non-Euclidean routing system based on
curves around obstacles targeting wireless networks [6]. Traf-
fic hotspots are modelled as virtual objects that are avoided
by the routing algorithm. How this can be implemented is not
specified. Circular Sailing Routing [7] focuses on passive load
balancing. This routing scheme makes use of a stereographic
projection of 2D Euclidean coordinates onto a sphere. The

authors report that a common problem in UDG based net-
works is traffic congestion at the center of the network under
a uniform traffic matrix. Due to the lack of a sphere center,
the system naturally avoids the center hotspot of the network.
A similar system is Curveball Routing [8] which also makes
use of a 2D Euclidean plane that is projected onto a sphere
to avoid congestion.

Another way of balancing traffic passively is using multiple
spanning tree based embeddings [9]. Root nodes are chosen
randomly to avoid the congestion of the root node, which is
reported as a general problem in tree-based geometric routing
systems [10]. However as the authors target UDGs, they do
not incorporate link load balancing. The tests are also limited
to small networks. Virtual Polar Coordinate Routing [10]
makes use of smart routing to attain passive load balancing.
Smart routing requires the network to be a UDG with a 2D
Euclidean embedding. Furthermore the tree should be ordered
in a specific way for smart routing to work which makes it
hard to apply to scale-free networks.

III. THEORETICAL FOUNDATION

In this section a theoretical foundation for the Forest
Routing (FR) scheme is built based on the work of [11]
and [12]. Geometric routing systems make use of the graph
embedding concept. Such an embedding is a mapping between
vertices of a graph and a certain mathematical space, formally
defined in the following definition.

Definition 1. Let S be a set and δ a metric function over S.
Let G = (V,E) be a graph, then an embedding of G into S
is a mapping f : V → S such that ∀u, v ∈ V : u 6= v ⇔
f(u) 6= f(v). [13]

To guarantee 100% routing delivery success rate a greedy
graph embedding is required, defined in by the following
definition.

Definition 2. A greedy embedding of a graph G = (V,E)
in a metric space (S, δ) is a mapping f : V → S with the
following property: for every pair of distinct vertices u,w ∈ V
there exists a vertex v adjacent to u such that δ(f(v), f(w)) <
δ(f(u), f(w)). [14]

Herein a metric space is the double formed by a space and
complementary distance function more formally defined by
the following definition.

Definition 3. For a set S and a function δ : S×S → R such
that the following conditions hold ∀u, v, w ∈ S:

1) δ(u, v) ≥ 0 ∧ δ(u, v) = 0⇔ u = v
2) δ(u, v) = δ(v, u)
3) δ(u,w) ≤ δ(u, v) + δ(v, w)

Then δ is called a metric and the double (S, δ) is called a
metric space.

In this work a spanning tree T = (V,E′) of the underlying
network G = (V,E) is used to generate an embedding.
This embedding makes use of a vertex labelling procedure
as described by [12] and a distance function representing the
shortest path length in T based on [11]. In this work the

embedding target space S is denoted as the tree space T.
This tree space can be defined as

T =
⋃

n∈N

(
(0)

_ Nn
)

(1)

in which the function (_) : Nm × Nn → Nm+n represents
the concatenation of two tuples. The labels assigned by the
labelling procedure are now interpreted as coordinates in T.
These coordinates form a greedy embedding [11] which is
denoted as T . Therefore each vertex v ∈ V corresponds to a
point in T identified by the coordinates T (v).1

The distance function δ is defined as

δ(u, v) = |u|+ |v| − 2|φ(u, v)| (2)

with φ : Nn × Nm → Np (p ≤ min{m,n}) the function
which generates the largest common prefix of two tuples; |u|
represents the size of the coordinates of vertex u. This results
in a distance function δ : T × T → R+ that, together with
the space T, forms the metric space (T, δ), which can easily
be proven. Now this metric space can be used according to
the principles of geometric routing, which means that every
vertex is aware of the coordinates of its neighbourhood and
that each node tries to forward a packet to a neighbouring
node closer to the destination based on a distance function.

IV. MULTI-EMBEDDING

A first step towards load balancing is the use of k spanning
trees Ti = (V,E′i) with ∀i ∈ {0, 1, . . . , k − 1} : E′i ⊆ E
to form k greedy embeddings of G into T instead of only
one. These different greedy embeddings are denoted as Ti.
The notation δ is now used to denote the k-tuple of distances
in all of the k embeddings. Therefore δi represents the tree
space distance for the i-th embedding Ti. By using a multi-
embedding it is possible to avoid traffic congestion at nodes
residing at lower depths in the tree, which is huge problem
for spanning tree based geometric routing algorithms [10].
The reason is two-fold:

1) Because of the existence of k different root nodes, traffic
congestion is now divided amongst them.

2) The chances of having shortcuts available increases,
which leads to a less crowded root and an overall
lower stretch. Shortcuts for a graph G = (V,E) and
a spanning tree T = (V,E′) are defined as links e ∈ E
for which holds e 6∈ E′.

The sacrifice made here is the increased storage require-
ments of the packet headers and the increased computational
complexity of the forwarding layer. This second increase in
complexity can however be mitigated by high parallelizability
of the forwarding decision making procedure.

To have access to a maximum number of shortcuts, the
spanning tree creation mechanism should minimize the tree
redundancy. With tree redundancy the overlap of different
spanning trees in the same network is meant. For example
when two trees Ti = (V,E′) and Tj = (V,E′′) have a
maximal redundancy, they completely overlap, meaning that

1Instead of writing T (u) we will make no distinction between the point a
vertex represents in its embedding space and the node itself. From the context
the meaning should be clear.

E′ = E′′. Because of this there is no advantage in using
them both for routing purposes as they will lead to the same
set of coordinates, as well as the same set of shortcut links.
When these two trees are said to have low redundancy, the
set E′ ∩ E′′ is small. Having a high tree redundancy should
be avoided for two reasons:

1) It leads to low fault-tolerance: a failing link which
happens to be a parent-child link for a large fraction
of the total trees will likely cause routing voids.

2) Little shortcuts exist: this causes traffic to be routed in
the direction of the root node, increasing the root traffic
hotspot.

A tree building procedure leading to k spanning trees of min-
imal depth, minimizing tree redundancy, is used to build the
different greedy embeddings Ti used to support the geometric
routing mechanisms presented in the next section.

V. ROUTING VARIANTS

A. Greedy Forest Routing (GFR)

A straightforward way of routing using multiple embed-
dings would be to allow a vertex to freely alternate between
them, due to their individual greediness. This naive forward-
ing mechanism fails due to the lack of a cycle avoidance
mechanism. Routing along a distance-decreasing path in Ti
may increase the distance in Tj . At a certain vertex along
the routing path the packet may be send back to its origin,
routing the packet along a cycle. A cycle avoidance solution
is enforcing each vertex along the routing path to decrease its
minimum distance to the destination. This way of working is
similar to the TCGR mechanism [9]. For this reason a new
distance function ε : Tk × Tk → R+ function is defined as

ε(u, v) = min
0≤i<k

{δi(u, v)} ∀u, v ∈ V (3)

The k embeddings into T can now be treated as a single
k-dimensional embedding into Tk. As such the principles
of geometric routing can be followed by having a relaxed
metric space (Tk, ε). This double cannot be regarded as a true
metric space as the triangle-inequality no longer holds (Def. 3
property 3), hence we call it relaxed. When forwarding,
multiple neighbours may have an equal ε-distance. Therefore
a random choice will be made among them.

This routing mechanism is called the greedy variant of
the final Forest Routing (FR) mechanism and is a special
case of Hybrid Forest Routing (HFR). Though Greedy Forest
Routing (GFR) solely focuses on attaining a low stretch, the
embedding into Tk leads to increased passive load balancing
behaviour over T.

B. Load Balanced Forest Routing (LBFR)

To supplement the passive load balancing behaviour emerg-
ing from GFR, an active load balancing approach was de-
veloped called Load Balanced Forest Routing (LBFR). This
system can be seen once more as a special case of the final
HFR routing scheme. Now vertices u ∈ V make use of load
information of their incident edges e ∈ I(u). Solely using
local link information is advantageous as it is scalable by
nature and therefore fitting for a large-scale distributed setting

like the Internet backbone. LBFR relaxes the greedy require-
ments of GFR. Alternately routing on different embeddings
Ti independently is now allowed. Because naive switching
between embeddings may introduce cycles, routing is guided
by an auxiliary function κ.

The function κ makes use of a function δ∗ : P ×Tk → Nk
which outputs a k-tuple storing the minimal distance to a
destination d attained by a packet so far along its routing
path Pu, before arriving at the current node u, for each of
the k embeddings. The i-th element of δ∗ is denoted as δ∗i .
The set P represents the union of all possible paths of the
network. Assume a packet has been routed along the path P =
〈p0, p1, . . . , pn〉 towards a destination vertex d, the function
κ is then of the type P × Tk → N and is defined as

κ(Ppn , d) =
k−1∑

i=0

δ∗i (Ppn , d) (4)

with δ∗(Ppn , d) a function of the type P × Tk → Nk that is
defined recursively as

δ∗i (Pp0 , d) = δi(p0, d) (5)
δ∗i (Ppn , d) = min{δ∗i (Ppn−1 , d), δi(pn, d)}

∀i ∈ {0, . . . , k − 1} ∧ ∀n > 0
(6)

Herein Pu represents the path P until u has been reached, it
consists of the vertices that a packet arriving at u has reached.
p0 is the source vertex of the path P . Each of the minimum
distance of the k embeddings is thus represented by an ele-
ment δ∗i (Pu, d). The LBFR system will route a packet along
a distance-decreasing path for each Ti individually but with a
restriction that κ has to decrease strictly monotonically along
the routing path: κ(Ppn , d) < κ(Ppn−1

, d) < . . . < κ(p0, d).
When forwarding, a node u will select those neighbouring
nodes which have a strictly decreasing κ-value and add them
to a set S(u). Next u will choose a vertex v ∈ S(u) as the
next node for which the current traffic load of the link (u, v)
is minimal compared to its other incident links I(u).

In order to guarantee packet delivery for every source-
destination combination the following theorems are intro-
duced.

Theorem 1. Let G = (V,E) be a graph with k embeddings
Ti for 0 ≤ i < k in the metric space (T, δ). Let d be the
destination node, then for every path P ∈ P of a graph with
v ∈ V as last element and where d has not been reached yet,
thus d 6∈ P , the set of neighbours S(v) for which the value
of the κ-function strictly decreases is not empty.

Proof: Assume a packet arriving at a vertex v by fol-
lowing a path P = 〈. . . , u, v〉. Assume this packet has to
be forwarded to a destination vertex d and that d 6∈ P .
This means that S(u) 6= ∅. Therefore κ(v) < κ(u). Be-
cause of the definition of κ as the sum defined by Eq. (4):
∃i ∈ {0, 1, . . . , k − 1} : δ∗i (Pv, d) < δ∗i (Pu, d). Combining
the definition of δ∗ in Eq. (6) with the definition of the min-
function gives δi(v, d) < δ∗i (Pu, d) and δ∗i (Pu, d) ≤ δi(u, d).
Therefore, again because of Eq. (6), δ∗i (Pv, d) = δi(v, d).
Also, δi(v, d) < δi(u, d) which means that the distance
towards d in embedding Ti has decreased. Because Ti is a

greedy embedding and Definition 2: ∃w ∈ N(v) : δi(w, d) <
δi(v, d). Thus because of Eq. (6) δ∗i (P_v w, d) = δ(w, d)
and therefore δ∗i (P_v w, d) < δ∗i (Pv, d). Combining this with
Eq. (4) leads to κ(P_v w, d) < κ(Pv, d) based on the fact that
δ∗i never increases along a path. From this follows: S(v) 6= ∅.
As such, any element from S(v) is a suitable next vertex
to which the packet can be forwarded without violating the
LBFR restrictions.

This theorem also holds for a source vertex s. Because of
Eq. (5), every value δ∗i is equal to the distance δi. Therefore
any vertex for which the distance towards the destination
decreases (and such a vertex exists due to each Ti being
a greedy embedding) leads to a lower κ-value. Thus at the
source vertex S(s) 6= ∅.

Theorem 2. The path followed by a packet routed on a graph
G = (V,E) by LBFR is never a cycle.

Proof: Assume a destination vertex d and a packet
traveled along P = 〈. . . , u, v, . . . , w〉 arriving at w ∈ N(v).
When arriving at v for the first time, δ∗i (Pv, d) ≤ δi(v, d)
because of Eq. (6). Since the values of δ∗ can never increase
due to the definition of the min-function, upon calculating
the κ-function value for the second time for vertex v (this
time from w): 6 ∃i ∈ {0, 1, . . . , k − 1} : δi(v, d) < δ∗i (Pw, d)
because if there would exists such an i then δ∗ would already
have been updated to this value the first time the packet has
arrived at v. Thus the κ-value cannot decrease the second time
v is encountered. Therefore no vertex appears twice along the
path followed by a packet routed according to LBFR which
enforces κ to be strictly monotonically decreasing along a
routing path.

Theorem 3. A packet routed according to the principles of
LBFR on a graph G = (V,E) will arrive at its destination.

Proof: Because κ is strictly monotonically decreasing
and the initial κ-value at the source vertex is finite (assuming
|V | is finite), it will become 0 after a finite number of
vertices have been traversed unless, it would have been routed
along a cycle or unless it would have encountered a void.
These two last cases are impossible due to Theorem 1 and
Theorem 2. When for a vertex v ∈ V and a destination d holds
κ(Pv, d) = 0 means that ∀i ∈ {0, 1, . . . , k−1} : δi(v, d) = 0.
Because of property 1 in Definition 3 which defines a metric
space, v = d. Therefore the destination has been reached at
vertex v.

Because of the previous theorems, the LBFR scheme is
always able to route a packet to its destination without encoun-
tering cycles or voids. This is important because routing on a
network such as the Internet backbone has to be guaranteed
for all source-destination pairs.

C. Hybrid Forest Routing (HFR)
In terms of stretch and load balancing behaviours, GFR and

LBFR are two opposites: GFR attains a low stretch but has no
load balancing technique while LBFR achieves load balancing
combined with a very large stretch (see Section VI). To com-
bine the best of both worlds, Hybrid Forest Routing (HFR)
was developed. It makes a trade-off between stretch and load
balancing by employing a cost function that combines link

load information with the ε-distance to the destination. This
cost function C : V 3 → R is defined as

C(u, n, d) = γ · L̂(u, n)α + (1− γ) · ε(n, d)α (7)

for n ∈ N(u), with the ε-function defined by Eq. (3). The
function L̂(u, v) represents the normalized traffic load of the
edge between u and v.2 This is the traffic load of the link
(u, v) divided by the average load of all the node’s incident
links I(u). This normalized load is defined by

L̂(u, n) =
dG(u) · L(u, n)
∑

v∈N(u)

L(u, v)
(8)

The factor γ ∈ [0, 1] is a weight factor to scale between greedy
and load balanced routing. The power α ∈]0,+∞[allows
for non-linear tuning. As can be seen, HFR also uses the
relaxed-metric space (Tk, ε), but because the cost function
is an extension of the ε-function it does not employ greedy
routing. It is not even necessarily distance decreasing in ε. To
guarantee packet delivery, the κ-function from LBFR is used
to steer packets towards their destination. Hence, it is called
a hybrid mechanism. It is able to attain strong load balancing
while keeping the stretch down, which is shown in Section VI.
GFR and LBFR can now be seen as two special instances of
HFR on the opposite side of the spectrum. When γ = 1 the
LBFR mechanism is recreated. When γ = 0 the HFR reverts
to GFR.

VI. RESULTS AND DISCUSSION

The different routing algorithms GFR, LBFR and HFR have
been analysed on their average stretch ρ̄ and link load balanc-
ing behaviour. We define the stretch of a path generated by
a routing algorithm as the path length divided by the shortest
path length between the same source and destination nodes.
The load balancing behaviour was measured by calculating
the βE-metric [15] defined as

βE =

(∑|E|
e=1 we

)2

|E|∑|E|e=1 w
2
e

(9)

with we the weight of edge e ∈ E. Note that ρ ≥ 1 (1: shortest
path routing) and 0 ≤ βE ≤ 1 (0: no load balancing, 1: traffic
equal on all links). The routing behaviour has been simulated
by a programmatic routing framework. In this framework
every edge is assigned a weight we, initially set to 0. This
weight we is increased whenever traffic is simulated along the
edge e. All traffic is Pareto distributed in size and a uniform
traffic matrix was employed at all times. The algorithms were
tested on the CAIDA graph [17] as well as scale-free networks
generated according to [16] (the number in the legend of each
plot indicates the number of nodes of the network, e.g. 8k
means 8000 nodes).

In Fig. 1 (top) the effect of changing the number of em-
beddings k (or the dimension of the space Tk) on the average
stretch ρ̄ and the βE-ratio is plotted for GFR. Asymptotic
behaviour ρ̄ → 1 can be observed as k → +∞. This can

2The representation of the load may be arbitrarily chosen but should be
consistent for all network links.

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1 5 10 15 20 25 30

ρ-

k

500

2k

8k

caida

0.00

0.20

0.40

0.60

0.80

1.00

1 5 10 15 20 25 30

β
E

k

Figure 1. GFR: average stretch ρ̄ (top) and link load balancing metric βE
(bottom) in function of the dimension k of the embedding space.

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

1 5 10 15 20 25 30

ρ-

k

0.00

0.20

0.40

0.60

0.80

1.00

1 5 10 15 20 25 30

β
E

k

500

2k

8k

caida

Figure 2. LBFR: average stretch ρ̄ (top) and link load balancing metric βE
(bottom) in function of the dimension k of the embedding space.

be explained by the availability of more embeddings, which
allows more routing forwarding freedom. As a result, there is
an increased chance that a combination of embeddings will
lead to a short path between two nodes. As the number of
vertices increases, k also needs to increase to maintain the
same stretch. However, no scalability issues can be noticed.
For the CAIDA graph, even at low k values, low ρ̄-values
can be observed. A possible explanation is that there exist
little alternative paths in the CAIDA graph, compared to the
scale-free graphs. In Fig. 1 (bottom) the link load balancing
behaviour is plotted. Though there is no active mechanism
steering for traffic load balancing in GFR, better load bal-
ancing is obtained as k increases. This may be due to the

existence of multiple root nodes, splitting the root hotspot
among k different roots. Also the existence of additional short
paths between different source and destination nodes reduces
the reliance on the root node to act as a transit hub for traffic
between different parts of the network.

Fig. 2 shows the previous experiment applied to LBFR. In
Fig. 2 (top) a steep increase in stretch can be observed as k
increases. Because more embeddings are available, there exist
more forwarding candidates that respect the κ-restriction (κ
should be strictly monotonically decreasing along the routed
path). Every node focuses entirely on load balancing the load
of its outgoing links, sacrificing the stretch while doing so.
In Fig. 2 (bottom) the βE-ratio is depicted. As k goes up,
βE shoots up towards 1, which indicates near-perfect load
balancing behaviour. Although the βE-ratio indicates that the
traffic is spread equally over all links, this does not mean that
the sum of the traffic over all network links is at its lowest
point. Because the stretch increases by a large factor, the total
network traffic goes up too. For this reason, the stretch should
always be prioritized in order not to overload the network.

1.00

1.50

2.00

2.50

3.00

3.50

4.00

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ρ-

γ

500

2k

8k

caida

0.00

0.20

0.40

0.60

0.80

1.00

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

β
E

γ

Figure 3. HFR: average stretch ρ̄ (top) and link load balancing metric βE
(bottom) in function of a varying γ-value.

Now HFR, which unites both GFR and LBFR, is evaluated.
When the parameter γ in Eq. (7) is shifted towards 0, the
GFR system is recreated, while shifting γ to 1 results in
LBFR. Therefore in Fig. 3 a sensitivity analysis for the γ-
parameter has been conducted. Fig. 3 (top) shows that at low
γ-values ρ̄ becomes equally low as with GFR. This stretch
remains steady for 0 ≤ γ ≤ 0.5. Afterwards, ρ̄ starts to incline
quickly as γ → 1. This is consistent with HFR approximating
LBFR. The βE-values in Fig. 3 (bottom) indicates that that
shifting γ between its two extremes gives the expected results.
Something interesting happens when looking at the right side
of γ = 0. A step can be noticed such that βE suddenly rises.
When inspecting Fig. 3 (top) there is no such step or ρ̄. This
can be explained by the fact that when a node has to make
a forwarding decision, lots of potential candidates will have

an equal distance to the destination. Therefore it does not
matter which node to take as the next node in terms of stretch.
However when taking into account load balancing, a huge
improvement can be made by prioritizing those links with a
low current load.

90%

92%

94%

96%

98%

100%

0% 5% 10% 15% 20% 25% 30%

s
u

c
c
e

s
s
 r

a
ti
o

link failure rate

b

nb

nb k=1

Figure 4. Fault-tolerance: the x-axis depicts the fraction of links removed
from the total number of links that can be removed (|E| − |V |+ 1) without
disconnecting the graph G = (V,E). HFR (γ = 0.1, α = 1, k = 15) with
(b) and without (nb) backup mechanism was tested along with GFR with
only a single embedding.

In Fig. 4 the routing success rate of the HFR system with
γ = 0.1, α = 1 and k = 15 is shown, alongside HFR
combined with a backup routing system [18] and GFR with
k = 1, exercised on a scale-free graph with 500 nodes. Links
were removed probabilistically such that the link failures are
spread out evenly over the network rather than being randomly
concentrated in a certain area. In the figure it can be noticed
that HFR is easily augmented with a backup mechanism that
is able to guarantee 100% success rate even in severe network
failure scenarios. However, even without a backup routing
mechanism, HFR is able to attain a success rate over 97%
when 30% of the possible links are removed. This is a huge
improvement over GFR with k = 1. This can be explained by
the fact that more embeddings create more possible pathways
from source to destination. Combined with its load balancing
behaviour, this makes HFR naturally very fault-tolerant.

VII. CONCLUSION

In this paper a theoretical framework was built which
serves as a foundation for the developed family of geometric
routing systems, called Forest Routing (FR). Combining a
strictly greedy approach (GFR) with a load balanced routing
scheme (LBFR) resulted in HFR. In HFR routing paths
approximate shortest paths very closely, while achieving link
traffic load balancing, two features until now not perceived to
be compatible. Due to its distributed nature and local routing
decision making it is highly scalable regarding router memory
requirements, making it robust towards the vast Internet AS
growth that can be currently witnessed.

Furthermore the HFR system has favourable characteristics
such as inherent fault-tolerance and the ability to cope with
a highly deteriorated network topology. Even at link failures
rates of 30% it is able to guarantee success rates as high as
97%. When augmenting the system with a tailored backup
routing mechanism, the success rate becomes 100% even at
high failure rates.

ACKNOWLEDGMENT

This work was carried out using the Stevin Supercomputer
Infrastructure at Ghent University, funded by Ghent Univer-
sity, the Hercules Foundation and the Flemish Government –
department EWI. This work is partly funded by the European
Commission through the EULER project (grant 258307), part
of the Future Internet Research and Experimentation (FIRE)
objective of the Seventh Framework Programme (FP7). To
visualize the different routing algorithms the open-source
graph visualization framework Gephi [19] was used.

REFERENCES

[1] A. Narayanan, “A survey on bgp issues and solutions,” CoRR, vol.
abs/0907.4815, 2009.

[2] F. Papadopoulos, D. Krioukov, M. Bogua, and A. Vahdat, “Greedy
forwarding in dynamic scale-free networks embedded in hyperbolic
metric spaces,” in INFOCOM, 2010 Proceedings IEEE, 2010, pp. 1–9.

[3] Y. Yu, R. Govindan, and D. Estrin, “Geographical and Energy Aware
Routing: a recursive data dissemination protocol for wireless sensor
networks,” Energy, vol. 463, 2001.

[4] K. Zeng, K. Ren, W. Lou, and P. J. Moran, “Energy aware efficient ge-
ographic routing in lossy wireless sensor networks with environmental
energy supply,” Wirel. Netw., vol. 15, no. 1, pp. 39–51, Jan. 2009.

[5] J. Zhang, Y.-p. Lin, M. Lin, P. Li, and S.-w. Zhou, “Curve-based greedy
routing algorithm for sensor networks,” in Proceedings of the Third
international conference on Networking and Mobile Computing, ser.
ICCNMC’05. Berlin, Heidelberg: Springer-Verlag, 2005, pp. 1125–
1133.

[6] N. Carlsson and D. L. Eager, “Non-euclidian geographic routing in
wireless networks,” Ad Hoc Netw., vol. 5, no. 7, pp. 1173–1193, Sep.
2007.

[7] F. Li, S. Chen, and Y. Wang, “Load balancing routing with bounded
stretch,” EURASIP J. Wirel. Commun. Netw., vol. 2010, pp. 10:1–10:16,
Apr. 2010.

[8] L. Popa, A. Rostamizadeh, R. Karp, C. Papadimitriou, and I. Stoica,
“Balancing traffic load in wireless networks with curveball routing,” in
Proceedings of the 8th ACM international symposium on Mobile ad hoc
networking and computing, ser. MobiHoc ’07. New York, NY, USA:
ACM, 2007, pp. 170–179.

[9] M. Tang, H. Chen, G. Zhang, and J. Yang, “Tree cover based geographic
routing with guaranteed delivery,” in Communications (ICC), 2010
IEEE International Conference on, 2010, pp. 1–5.

[10] J. Newsome and D. Song, “Gem: graph embedding for routing and data-
centric storage in sensor networks without geographic information.”
ACM Press, 2003, pp. 76–88.

[11] E. Chávez, N. Mitton, and H. Tejeda, “Routing in wireless networks
with position trees,” in Ad-Hoc, Mobile, and Wireless Networks, ser.
Lecture Notes in Computer Science, E. Kranakis and J. Opatrny, Eds.
Springer Berlin Heidelberg, 2007, vol. 4686, pp. 32–45.

[12] A. Korman, D. Peleg, and Y. Rodeh, “Labeling schemes for dynamic
tree networks,” in STACS 2002, ser. Lecture Notes in Computer Science,
H. Alt and A. Ferreira, Eds. Springer Berlin Heidelberg, 2002, vol.
2285, pp. 76–87.

[13] A. Rao, S. Ratnasamy, C. Papadimitriou, S. Shenker, and I. Stoica,
“Geographic routing without location information,” in Proceedings of
the 9th annual international conference on Mobile computing and
networking, ser. MobiCom ’03. New York, NY, USA: ACM, 2003,
pp. 96–108.

[14] R. Kleinberg, “Geographic routing using hyperbolic space,” in IN-
FOCOM 2007. 26th IEEE International Conference on Computer
Communications. IEEE, 2007, pp. 1902–1909.

[15] H. Velayos, V. Aleo, and G. Karlsson, “Load balancing in overlapping
wireless lan cells,” in Communications, 2004 IEEE International Con-
ference on, vol. 7, 2004, pp. 3833–3836 Vol.7.

[16] A.-L. Barabási and R. Albert, “Emergence of scaling in random
networks,” Science, vol. 286, no. 5439, pp. 509–512, 1999.

[17] Y. Hyun, A. Broido, and k. claffy, “Traceroute and BGP AS Path Incon-
gruities,” Cooperative Association for Internet Data Analysis (CAIDA),
Tech. Rep., Mar 2003.

[18] A. Cvetkovski and M. Crovella, “Hyperbolic embedding and routing
for dynamic graphs,” in INFOCOM 2009, IEEE, 2009, pp. 1647–1655.

[19] M. Bastian, S. Heymann, and M. Jacomy, “Gephi: An open source
software for exploring and manipulating networks,” 2009.

Adaptieve geometrische routering voor de
internet-backbone

Rein Houthooft
Begeleiders: Seyedeh Sahel Sahhaf, dr. Wouter Tavernier

Promotors: prof. dr. ir. Didier Colle, prof. dr. ir. Mario Pickavet

Samenvatting—In dit werkstuk werd het toepassen van geome-
trische routering op het scale-free inter-AS netwerk onderzocht.
De belangrijkste bijdrage is een familie van routeringsalgoritmen
genaamd Forest Routing (FR), gebaseerd op de principes van
geometrische routering. Hierbij wordt er gefocust op de schaal-
baarheid van het geheugen van de routers en de natuurlijke
loadbalancing van het netwerkverkeer. Dit wordt bereikt door
het gebruik van een aggregatie van greedy inbeddingen, in sa-
menwerking met een nieuwe afstandsfunctie. Het aanwenden van
verkeersinformatie in de forwardinglaag kan voor loadbalancing
zorgen in combinatie met een lage gemiddelde padlengte. Voorts
zijn de routeringsalgoritmen zeer bestendig ten opzichte van het
falen van links en knopen, en zijn ze dusdanig in staat om zelfs
met een grondig verstoord netwerk om te kunnen.

Trefwoorden—geometrische routering, loadbalancing, scale-
freenetwerken, fouttolerantie

I. INTRODUCTIE

Op dit moment wordt routering binnen de internet backbone
voorzien door het Border Gateway Protocol (BGP). Hoewel
het een fundamenteel internet protocol is kampt het met
ettelijke problemen. Het aantal Autonome Systemen (AS’en)
gestaag door de aanzienlijke groei van het internet. Dit
veroorzaakt schaalbaarheidsproblemen van het geheugen van
routers omdat het aantal rijen in de BGP tabellen eveneens
sterk toeneemt. Dit komt doordat elke knoop verplicht is een
gigantische hoeveelheid informatie betreffende verschillende
routes bij te houden [1] [2]. Hierdoor is het duidelijk dat
het BGP nooit gebouwd was om aan deze groei te voldoen.
Er is dus nood aan alternatieve routeringsmechanismen die
van nature schaalbaar zijn. Voorts zou het goed zijn moesten
deze toekomstige algoritmen begeerde eigenschappen bezitten
zoals loadbalancing en fouttolerantie.

In het laatste decennium maakten geometrische route-
ringsalgoritmen hun intrede. Hoewel ze origineel ontworpen
waren voor ad-hoc draadloze netwerken en draadloze sensor
netwerken (WSN’en) hebben onderzoekers ontdekt dat ze ook
voor bekabelde netwerken bruikbaar zijn. Dit vereist echter
een andere aanpak aangezien bekabelde netwerken meestal
als scale-freenetwerken gemodelleerd worden in plaats van
eenheidsschijfgrafen (unit-disk graphs of UDG’s), welke een
model zijn voor WSN’en. In geometrische routering wordt er
gebruik gemaakt van een graaf inbedding waarbij elke vertex
wordt ingebed in een wiskundige ruimte. Hierbij wordt elke
knoop van een set van coördinaten in deze ruimte voorzien.
Op basis van deze coördinaten en een bijhorende afstands-
functie kunnen pakketten via geometrische routering naar hun

bestemming geleid worden langs een afstandsverminderend
pad.

Het toepassen van geometrische routering op bekabelde
netwerken is een nog relatief onontgonnen onderwerp. Een
open vraag is dan ook hoe we loadbalancing van het net-
werkverkeer kunnen verkrijgen in combinatie met een korte
gemiddelde padlengte en een succesratio van 100%. Dit artikel
onderzoekt hoe loadbalancing toegepast kan worden in geo-
metrische routering. De belangrijkste bijdrage is een familie
van routeringsalgoritmes genaamd Forest Routing (FR). Deze
algoritmen zijn in staat loadbalancing te combineren met een
lage stretch en 100% routeringssuccesratio, terwijl ze resistent
zijn ten opzichte van het falen van links en knopen. Ze zijn
toepasbaar op een breed scala van netwerken maar werden
specifiek ontwikkeld voor scale-freenetwerken.

II. GERELATEERD WERK

Veel geometrische routeringsalgoritmen doelen op UDG’s
i.p.v scale-freenetwerken. Hierdoor zijn deze ze moeilijk toe
te passen op het inter-AS netwerk. Het is echter nuttig te
onderzoeken welke technieken gebruikt worden om loadba-
lancing in geometrische routering te verkrijgen. Over het
algemeen kunnen loadbalancing technieken in twee catego-
rieën opgedeeld worden: passieve en actieve loadbalancing
strategieën. Passieve loadbalancing strategieën maken gebruik
van de inherente structuur van het routeringsalgoritme om ver-
keer te spreiden over het netwerk. Daarentegen maakt actieve
loadbalancing gebruik van verkeersinformatie om verkeer weg
van leiden van hotspots. Een gevolg is dat actieve loadbalan-
cing mechanismen routering kunnen aanpassen naargelang de
verkeersmatrix.

Veel loadbalancing strategieën die op WSN’en toegepast
worden trachten het aantal overbelaste knopen te verminderen,
omwille van hun gelimiteerde batterijcapaciteit. Dusdanig
focust loadbalancing onderzoek zich vooral op knoop load-
balancing eerder dan link loadbalancing. Een routeringsal-
goritme gestuurd door de energieniveaus van de knopen in
het netwerk is Geographical and Energy Aware Routing
[3]. Dit mechanisme maakt gebruik van een 2D Euclidische
inbedding en een forwardingbeslissingsheuristiek gebaseerd
op de energieniveaus van de buurt van de huidige knoop.
Doordat verkeer gestuurd wordt naar knopen met meer energie
leidt dit tot loadbalancing, aangezien de grootste bron van
energieverbruik het verwerken van pakketten is. [4] stelt een
gelijkaardige aanpak voor. Door knopen enkel toe te laten
hun lokale buurt te benutten blijft het routeringsalgoritme

schaalbaar. Een meer geavanceerde aanpak is Curve-Based
Greedy Routing [5]. Hierin wordt verkeer gestuurd d.m.v. een
B-spline welke berekend wordt door de bronknoop waarna
deze in de pakketheader geplaatst wordt. Door een selectie-
criterium te benutten dat gebaseerd is op de afstand tot deze
B-spline en het energieniveau van een node hebben knopen
meer vrijheid in het maken van hun forwardingbeslissing dan
gewone greedy routering. Daarnaast gebruiken de knopen een
feedbackmechanisme om ervoor te zorgen dat de bronknoop
een nieuwe B-spline berekent om het verkeer rond hotspots
te kunnen sturen.

LBLSP gebruikt een niet-Euclidisch routeringssysteem ge-
baseerd op curves rondom obstakels, specifiek gericht op
draadloze netwerken [6]. Verkeershotspots worden gemodel-
leerd als virtuele objecten die het algoritme tracht te ont-
wijken. Echter hoe dit geı̈mplementeerd kan worden wordt
niet gespecificeerd. Circular Sailing Routing [7] focust op het
bereiken van passieve loadbalancing. Dit routeringsalgoritme
maakt gebruik van een stereografische projectie van 2D Eu-
clidische coördinaten op een sfeer. De auteurs rapporteren dat
een algemeen probleem van UDG-gebaseerde netwerken is
dat het centrum van het netwerk opgestopt raakt onder een
uniforme verkeersmatrix. Omdat een sfeer geen centrum heeft,
vermijdt het algoritme op natuurlijke wijze dit centraal opstop-
pingsprobleem. Een gelijkaardige aanpak is Curveball Routing
[8] waarbij er ook gebruik gemaakt wordt van een projectie
van een 2D Euclidisch vlak op een sfeer om opstopping te
vermijden.

Een andere manier om passieve loadbalancing te verkrij-
gen is het gebruik van meerdere inbeddingen gebaseerd op
verschillende opspannende bomen van het netwerk [9]. De
wortelknopen worden op willekeurige wijze gekozen om het
opstoppingseffect ronde de wortelknoop te vermijden, wat
een algemeen probleem is van boomgebaseerde geometrische
routeringssystemen [10]. Omdat de auteurs zich richten op
UDG’s houden ze echter geen rekening met linkloadbalan-
cing. Ook zijn de testen beperkt tot kleine netwerken. Virtual
Polar Coordinate Routing [10] maakt gebruik van smart
routing om passieve loadbalancing te bereiken. Smart routing
vereist dat het netwerk een UDG is dat ingebed is in een
2D Euclidische ruimte. Voorts dienen de boomknopen op een
specifieke wijze geordend te zijn opdat smart routing zou
slagen, wat moeilijk toe bereiken is in scale-freenetwerken.

III. THEORETISCH FUNDAMENT

In deze sectie wordt een theoretisch fundament voor Forest
Routing (FR) gebouwd gebaseerd op het werk van [11] en
[12]. Geometrische routeringsalgoritmen maken gebruik van
het concept van een graafinbedding. Zo een inbedding is een
mapping tussen knopen van een graaf en een wiskundige
ruimte, wat als volgt formeel gedefinieerd kan worden.

Definitie 1. Laat S een verzameling zijn en δ een metriek-
functie over S. Laat G = (V,E) een graaf zijn, dan is
een inbedding van G in S een mapping f : V → S zodat
∀u, v ∈ V : u 6= v ⇔ f(u) 6= f(v). [13]

Om een routeringssuccesratio van 100% te kunnen garan-
deren is er nood aan een greedy graafinbedding, als volgt
gedefinieerd.

Definitie 2. Een greedy inbedding van een graaf G = (V,E)
in een metriekruimte (S, δ) is een mapping f : V → S met
de volgende eigenschap: voor elk paar verschillende knopen
u,w ∈ V bestaat er een knoop v aanliggend aan u zodat
δ(f(v), f(w)) < δ(f(u), f(w)). [14]

Hierin is een metriekruimte een koppel gevormd door
een ruimte en een bijhorende afstandsfunctie, meer formeel
gedefinieerd door volgende definitie.

Definitie 3. Voor een verzameling S en een functie δ :
S × S → R waarvoor de volgende eigenschappen gelden,
∀u, v, w ∈ S:

1) δ(u, v) ≥ 0 ∧ δ(u, v) = 0⇔ u = v
2) δ(u, v) = δ(v, u)
3) δ(u,w) ≤ δ(u, v) + δ(v, w)

Dan is δ een metriek en het koppel (S, δ) is een metriekruimte.

In dit werk wordt een opspannende boom T = (V,E′)
van het netwerk G = (V,E) gebruikt om een inbed-
ding te genereren. Deze inbedding maakt gebruik van een
knooplabellingsprocedure zoals beschreven door [12] en een
afstandsfunctie welke de kortste padlengte in T voorstelt,
gebaseerd op [11]. In dit werk wordt de doelruimte S voor de
inbedding genoteerd als de boomruimte T. Deze boomruimte
kan gedefinieerd worden als

T =
⋃

n∈N

(
(0)

_ Nn
)

(1)

waarin de functie (_) : Nm×Nn → Nm+n de samenvoeging
van twee tupels voorstelt. De labels toegewezen door het
labellingsproces worden nu geı̈nterpreteerd als coördinaten in
T. Deze coördinaten vormen een greedy inbedding [11] welke
genoteerd wordt als T . Hierdoor correspondeert elke knoop
v ∈ V met een punt in T geı̈dentificeerd door de coördinaten
T (v).1

De afstandsfunctie δ wordt gedefinieerd als

δ(u, v) = |u|+ |v| − 2|φ(u, v)| (2)

met φ : Nn × Nm → Np (p ≤ min{m,n}) de functie die de
langste gemeenschappelijke prefix van twee tupels teruggeeft;
|u| stelt de lengte van de coördinaten van de knoop u voor.
Dit resulteert in een afstandsfunctie δ : T × T → R+ welke
samen met de ruimte T een metriekruimte (T, δ) vormt (dit
is triviaal te bewijzen). Nu kan deze metriekruimte gebruikt
worden volgens de principes van geometrische routering, die
inhouden dat elke knoop zich bewust is van de coördinaten
van zijn buurt en dat elke knoop een pakket dichter naar de
bestemming tracht te sturen, gebaseerd op een afstandsfunctie.

IV. MULTI-INBEDDING

Een eerste stap tot het verkrijgen van loadbalancing is
het gebruik van k opspannende bomen Ti = (V,E′i) met
∀i ∈ {0, 1, . . . , k − 1} : E′i ⊆ E om op basis hiervan k
greedy inbeddingen van G in T te vormen, in plaats van
één enkele inbedding. Deze verschillende greedy inbeddingen

1In plaats van T (u) te schrijven zullen we geen onderscheid maken tussen
het punt dat een knoop voorstelt in zijn inbeddingsruimte en de knoop zelf.
De exacte betekenis kan afgeleid worden uit de context.

worden genoteerd als Ti. De notatie δ beschrijft nu het k-
tupel van afstanden in elk van de k inbeddingen. Hierdoor
beschrijft δi de afstand in de boomruimte voor de i-de
inbedding Ti. Door het aanwenden van een multi-inbedding
is het mogelijk verkeersopstoppingen rond knopen op lagere
dieptes in de boom te vermijden. Dit is namelijk een groot
probleem in geometrische routeringsalgoritmen die werken
met opspannende bomen [10]. De reden hiervoor is tweeledig:

1) Omdat er nu k verschillende wortelknopen bestaan
wordt de verkeersopstopping gespreid over deze k kno-
pen.

2) De kans dat er shortcuts beschikbaar zijn wordt groter,
wat leidt tot een minder opgestopte wortelknoop en een
gemiddeld lagere stretch. Shortcuts van een graaf G =
(V,E) en een opspannende boom T = (V,E′) zijn links
e ∈ E waarvoor geldt e 6∈ E′.

De opoffering die hier gemaakt wordt is verhoogde opslagver-
eisten van de pakketheaders en een verhoogde computationele
complexiteit van de forwardinglaag. Echter, deze tweede
verhoogde complexiteit kan beperkt worden door het uitbuiten
van de parallelliseerbaarheid van de forwardingbeslissingspro-
cedure.

Om toegang te hebben tot zoveel mogelijk shortcuts, dient
het opspannende boom generatieproces boomredundantie te
vermijden. Hiermee wordt de overlap tussen verschillende op-
spannende bomen bedoeld, binnen hetzelfde netwerk. Bijvoor-
beeld, wanneer twee bomen Ti = (V,E′) en Tj = (V,E′′)
een maximale redundantie hebben, overlappen ze volledige,
wat betekent dat E′ = E′′. Hierdoor is er geen voordeel bij het
gebruik van beide bomen voor routeringsdoeleinden aangezien
ze tot de zelfde set van coördinaten leiden, alsook dezelfde set
van shortcutlinks. Wanneer deze bomen een lage redundantie
hebben is de set E′ ∩E′′ klein. Hoge boomredundantie moet
vermeden worden omwille van twee redenen:

1) Het leidt tot een lage fouttolerantie: een falende link
die een ouder-kind link is voor een grote fractie van
de bomen heeft een grotere waarschijnlijkheid om tot
routeringsvoids te leiden.

2) Er bestaan weinig shortcuts: hierdoor wordt verkeer
meer in de richting van de wortelknoop gestuurd, wat
het wortelopstoppingseffect versterkt.

Een boomgeneratieprocedure die leidt tot k opspannende
bomen van minimale diepte dat ook boomredundantie ver-
mijdt dient dus aangewend te worden bij het opbouwen van
de verschillende greedy inbeddingen Ti om de geometrisch
routeringsalgoritmen beschreven in volgende secties te onder-
steunen.

V. ROUTERINGSVARIANTEN

A. Greedy Forest Routing (GFR)

Een logische manier om te routeren op basis van meerdere
inbeddingen is het toelaten van een knoop om vrij te alterneren
tussen deze verschillende inbeddingen, op basis van hun
afzonderlijke greedyheid. Echter, deze naı̈eve manier van
forwarding faalt omdat cycli niet vermeden worden. Routering
volgens een afstandsverminderend pad in Ti kan de afstand
in Tj namelijk doen toenemen, omdat in een bepaalde knoop
langs het gerouteerde pad beslist kan worden om het pakket

terug te zenden naar zijn beginpunt, waardoor een cyclus
ontstaat. Een manier om cycli te vermijden is het verplichten
van elke knoop om zijn minimum afstand tot de bestemming
te verminderen bij elke hop. Deze manier van werken is
gelijkaardig aan het TCGR mechanisme [9]. Daarom wordt er
een nieuwe afstandsfunctie ε : Tk×Tk → R+ geı̈ntroduceerd:

ε(u, v) = min
0≤i<k

{δi(u, v)} ∀u, v ∈ V (3)

De k inbedding in T kunnen nu gezien worden als één enkele
k-dimensionale inbedding in Tk. Dusdanig kunnen de prin-
cipes van geometrische routering gerespecteerd worden door
gebruik te maken van de gerelaxeerde metriekruimte (Tk, ε).
Dit koppel vormt echter geen metriekruimte meer in de strikte
zin van het woord aangezien de driehoeksongelijkheid niet
meer geldt, vandaar dat we het een gerelaxeerde metriekruimte
noemen. Bij het forwarden kan het voorkomen dat meerdere
buren een gelijke ε-afstand hebben. Indien dit het geval is
wordt er onder hen een willekeurige keuze gemaakt.

Dit routeringsalgoritme wordt de greedy variant van het
finale Forest Routing (FR) mechanisme genoemd en is een
speciaal geval van Hybrid Forest Routing (HFR). Hoewel
Greedy Forest Routing (GFR) louter focust op het behalen van
een lage stretch, leidt de inbedding in Tk tot een verhoogd
passief loadbalancinggedrag ten opzichte van T.

B. Load Balanced Forest Routing (LBFR)

Om het passieve loadbalancinggedrag van GFR te onder-
steunen werd een actieve loadbalancingaanpak ontworpen,
genaamd Load Balanced Forest Routing (LBFR). Dit systeem
kan opnieuw gezien worden als een speciaal geval van het
uiteindelijke schema HFR. Nu maken knopen u ∈ V gebruik
van belastingsinformatie betreffende hun aanliggende links
e ∈ I(u). Uitsluitend gebruik maken van lokale belastingsin-
formatie is voordelig aangezien dit van nature schaalbaar is,
wat het zeer passend maakt in een grootschalige gedistribu-
eerde context zoals de internet backbone. LBFR relaxeert de
greedy vereisten van GFR. Alternerend onafhankelijk routeren
op basis van verschillende inbeddingen Ti is nu toegestaan.
Doordat naı̈ef veranderen van inbedding leidt tot cycli, wordt
het routeren gestuurd door een hulpfunctie κ.

De functie κ maakt gebruik van een functie δ∗ : P×Tk →
Nk die een k-tupel teruggeeft dat de minimale afstand tot
de bestemming d, bereikt langs het gerouteerde pad Pu voor
elke van de k inbeddingen, voorstelt, voordat in u aankwam.
Hier stelt P de unie van alle mogelijke paden in het netwerk
voor. Stel dat een pakket langs het pad P = 〈p0, p1, . . . , pn〉
gerouteerd werd naar een bestemmingsknoop d, dan is de
functie κ van het type P × Tk → N en is deze gedefinieerd
als

κ(Ppn , d) =
k−1∑

i=0

δ∗i (Ppn , d) (4)

met δ∗(Ppn , d) een functie van het type P × Tk → Nk die
recursief gedefinieerd is als

δ∗i (Pp0 , d) = δi(p0, d) (5)
δ∗i (Ppn , d) = min{δ∗i (Ppn−1

, d), δi(pn, d)}
∀i ∈ {0, . . . , k − 1} ∧ ∀n > 0

(6)

Hierin stelt Pu het pad P voor tot u bereikt werd. Dit pad
bestaat dus uit alle knopen die het pakket bezocht heeft
voordat het ontvangen werd in u (u inclusief). p0 is de
bronknoop van het pad P . Elke van de minimale afstanden
van de k inbeddingen wordt dus gerepresenteerd door een
element δ∗i (Pu, d). Het i-de element van δ∗ wordt genoteerd
als δ∗i . Het LBFR systeem zal een pakket routeren langs een
afstandsverminderend pad voor elke Ti afzonderlijk maar met
de beperking dat κ strikt monotoon moet dalen langs het
gevolgde pad: κ(Ppn , d) < κ(Ppn−1

, d) < . . . < κ(p0, d).
Bij het forwarden zal een knoop u de buren selecteren die
een strikt dalende κ waarde hebben en ze toevoegen aan
de verzameling S(u). Hierna zal u een knoop v ∈ S(u)
kiezen waarvoor de belasting van de link (u, v) minimaal is
in vergelijking met de andere aanliggende links I(u).

Om het bereiken van de bestemming te garanderen voor
elke bron-bestemmingscombinatie worden de volgende theo-
rema’s geı̈ntroduceerd:

Theorema 1. Laat G = (V,E) een graaf zijn met k
inbeddingen Ti voor 0 ≤ i < k in de metriekruimte (T, δ).
Laat d een bestemmingsknoop zijn, dan is voor elk pad P ∈ P
in de graaf met v ∈ V als laatste element en waarbij d nog
niet bereikt is, dus d 6∈ P , de verzameling van buren S(v)
waarvoor de κ-functie strikt daalt niet leeg.

Proof: Veronderstel een pakket dat toekomt in knoop v
door een pad P = 〈. . . , u, v〉 te volgend. Stel dat dit pakket
naar de bestemmingsknoop d gestuurd dient te worden en dat
d 6∈ P . Dit betekent dat S(u) 6= ∅. Daardoor is κ(v) <
κ(u). Omwille van de definitie van κ als de som gedefinieerd
door vgl. (4): ∃i ∈ {0, 1, . . . , k − 1} : δ∗i (Pv, d) < δ∗i (Pu, d).
Combineer de definitie van δ∗ in vgl. (6) met de definitie van
de min-functie, dit geeft δi(v, d) < δ∗i (Pu, d) en δ∗i (Pu, d) ≤
δi(u, d). Hierdoor, en opnieuw vanwege vgl. (6), δ∗i (Pv, d) =
δi(v, d). Ook is δi(v, d) < δi(u, d) wat betekent dat de afstand
tot d in inbedding Ti verkleind is. Aangezien Ti een greedy
inbedding is en definitie 2: ∃w ∈ N(v) : δi(w, d) < δi(v, d).
Dus omwille van vgl. (6) is δ∗i (P_v w, d) = δ(w, d), aldus is
δ∗i (P_v w, d) < δ∗i (Pv, d) waar. Dit combineren met vgl. (4)
leidt tot κ(P_v w, d) < κ(Pv, d) gebaseerd op het feit dat δ∗i
nooit stijgt langs het gevolgde pad. Hieruit volgt: S(v) 6=
∅. Dusdanig is eender welk element uit S(v) een geschikte
kandidaatsknoop om het pakket naartoe te sturen zonder de
LBFR beperkingen te schaden.

Dit theorema is ook waar voor de bronknoop s. Omwille
van vgl. (5) is elke waarde δ∗i gelijk aan de afstand δi.
Daarom zal elke knoop waarbij de afstand naar de bestemming
daalt (en zo een knoop bestaat aangezien elke Ti een greedy
inbedding is) leiden tot een lagere κ waarde. Dus voor de
bronknoop geldt S(s) 6= ∅.

Theorema 2. Het pad gevolgd door een pakket in een graaf
G = (V,E) dat gerouteerd wordt door LBFR is nooit een
cyclus.

Proof: Neem een bestemmingsknoop d en een pakket
dat langs P = 〈. . . , u, v, . . . , w〉 gerouteerd is en toekomt in
w ∈ N(v). Wanneer er voor het eerst in v aangekomen wordt
zal δ∗i (Pv, d) ≤ δi(v, d) zijn door vgl. (6). Omdat de waarden

van δ∗ nooit kunnen stijgen omwille van de definitie van de
min-functie zal bij de tweede keer dat κ berekend wordt voor
knoop v (deze keer vanuit w) gelden: 6 ∃i ∈ {0, 1, . . . , k−1} :
δi(v, d) < δ∗i (Pw, d) omdat indien er zo een i zou bestaan zou
δ∗ reeds geüpdatet zijn naar deze waarden de eerste keer dat
het pakket in v arriveerde. Dus de tweede keer dat v bereikt
wordt kan κ niet meer dalen. Aldus kan geen knoop tweemaal
bereikt worden door een pakket gerouteerd door LBFR zonder
de beperking te schaden dat κ strikt monotoon dalend moet
zijn langs het routeringspad.

Theorema 3. Een pakket dat gerouteerd wordt volgens de
principes van LBFR in een graaf G = (V,E) zal aankomen
in zijn bestemming.

Proof: Omdat κ strikt monotoon dalend is en de aan-
vankelijke waarde van κ eindig is (in de veronderstelling
dat |V | eindig is), zal deze 0 worden na een eindig aantal
stappen, tenzij er in een cyclus zou gerouteerd worden of er
een void bereikt zou worden. Deze gevallen zijn uitgesloten
door theorema 1 en theorema 2. Wanneer voor knoop v ∈ V
en een bestemming d geldt dat κ(Pv, d) = 0 betekent dit dat
∀i ∈ {0, 1, . . . , k−1} : δi(v, d) = 0. Omwille van eigenschap
1 in definitie 3, die een metriekruimte definieert, geldt v = d.
Dus de bestemming is bereikt in v.

Omwille van de vorige theorema’s zal LBFR altijd in staat
zijn een pakket naar zijn bestemming te leiden zonder in
cycli te routeren of voids tegen te komen. Dit is belangrijk
aangezien routering in een netwerk zoals de internet backbone
moet gegarandeerd worden voor alle bron-bestemmingsparen.

C. Hybrid Forest Routing (HFR)

In termen van stretch en loadbalancing zijn GFR en LBFR
twee tegengestelden: GFR bereikt een lage stretch maar wendt
geen loadbalancingtechniek aan, terwijl LBFR weliswaar
loadbalancinggedrag vertoont maar een zeer hoge stretch heeft
(zie sectie VI). Om het beste van deze twee werelden te com-
bineren wordt Hybrid Forest Routing (HFR) geı̈ntroduceerd.
HFR maakt een trade-off tussen stretch en loadbalancing door
een kostfunctie te gebruiken welke linkbelastingsinformatie
combineert met de ε-afstand tot de bestemming. Deze kost-
functie C : V 3 → R wordt gedefinieerd als

C(u, n, d) = γ · L̂(u, n)α + (1− γ) · ε(n, d)α (7)

voor n ∈ N(u), met de ε-functie gedefinieerd door vgl. (3).
De functie L̂(u, v) is de genormaliseerde belasting van de link
tussen u en v.2 Dit is de verkeersbelasting van de link (u, v)
gedeeld door de gemiddelde belasting van alle aanliggende
links I(u) van deze knoop. Deze genormaliseerde belasting
is gedefinieerd als

L̂(u, n) =
dG(u) · L(u, n)
∑

v∈N(u)

L(u, v)
(8)

Met γ ∈ [0, 1] een gewichtsfactor om een afweging tussen
greedy en routering met loadbalancing mogelijk te maken.
De exponent α ∈]0,+∞[staat niet-lineaire tuning toe. Zoals

2De representatie van de genormaliseerde belasting kan arbitrair gekozen
worden maar dient consistent te zijn voor alle links in het netwerk.

gezien kan worden maakt HFR eveneens gebruik van de
gerelaxeerde metriekruimte (Tk, ε), echter via de kostfunctie
welke een extensie is van de ε-functie. Hierdoor gebruikt
HFR geen greedy routering. Het is zelfs niet zo dat HFR
afstandsverminderende paden in ε genereert. Om te garan-
deren dat pakketten hun bestemming bereiken wordt de κ-
functie van LBFR gebruikt om pakketten te sturen. Vandaar
dat we HFR een hybride mechanisme noemen. HFR is in staat
loadbalancing te bereiken in combinatie met een lage stretch,
wat wordt aangetoond in sectie VI. GFR en LBFR kunnen nu
gezien worden als twee speciale gevallen van HFR aan andere
uiteinden van het spectrum. Wanneer γ = 1 wordt het LBFR
mechanisme gecreëerd. Indien γ = 0 bekomen we het GFR
mechanisme.

VI. RESULTATEN EN DISCUSSIE

De verschillende algoritmen GFR, LBFR en HFR zijn
geanalyseerd op basis van hun gemiddelde stretch ρ̄ en hun
link loadbalancinggedrag. De stretch wordt gedefinieerd als de
lengte van een pad gegenereerd door een routeringsalgoritme
gedeeld door de kortste padlengte tussen dezelfde bron en
bestemming. Het loadbalancinggedrag wordt gemeten door
het berekenen van de βE-metriek [15] gedefinieerd als

βE =

(∑|E|
e=1 we

)2

|E|∑|E|e=1 w
2
e

(9)

met we het gewicht van de link e ∈ E. Merk op dat
ρ ≥ 1 (1: kortste pad routering) en dat 0 ≤ βE ≤ 1 (0:
geen loadbalancing, 1: verkeer is evenredig verdeeld over
alle links). Het routeringsgedrag werd gesimuleerd door een
programmatisch routeringsraamwerk. In dit raamwerk is elke
link een gewicht we toebedeeld, welke initieel op 0 staat.
Dit gewicht we wordt verhoogd telkens wanneer er verkeer
over de link e gesimuleerd wordt. Alle verkeer is Pareto-
gedistribueerd in grootte en een uniforme verkeersmatrix werd
aangewend. De algoritmen werden getest op de CAIDA graaf
[16] en scale-freenetwerken gegenereerd volgens [17] (het
nummer in de legende van elke plot duidt op het aantal knopen
in de graaf, vb. 8k betekent 8000 knopen).

In figuur 1 (boven) wordt het effect getoond van het
veranderen van het aantal inbeddingen k (wat ook de dimensie
van de ruimte Tk is) op de gemiddelde stretch ρ̄ en de
βE-ratio voor GFR. Er kan asymptotisch gedrag ρ̄ → 1
waargenomen worden als k → +∞. Dit kan verklaard
worden door de beschikbaarheid van meerdere inbeddingen,
wat meer routeringsvrijheid inzake de forwardingbeslissing
toelaat. Hieruit volgt dat er een verhoogde kans is dat een
combinatie van inbeddingen tot een kort pad tussen twee
knopen zal leiden. Indien het aantal knopen omhoog gaat
moet k ook meeschalen om dezelfde stretch aan te houden.
Toch zijn er geen schaalbaarheidsproblemen merkbaar. Voor
de CAIDA graaf kan zelfs bij lage k waarden een lage
gemiddelde stretch ρ̄ waargenomen worden. Een mogelijke
verklaring is dat er weinig alternatieve paden aanwezig zijn in
de CAIDA graaf, in vergelijking met de scale-freenetwerken.
In figuur 1 (beneden) wordt het link loadbalancinggedrag
geplot. Hoewel er geen mechanisme in GFR aanwezig is

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1 5 10 15 20 25 30

ρ-

k

500

2k

8k

caida

0.00

0.20

0.40

0.60

0.80

1.00

1 5 10 15 20 25 30

β
E

k

Figuur 1. GFR: gemiddelde stretch ρ̄ (boven) en linkloadbalancingmetriek
βE (beneden) in functie van de dimensie k van de inbeddingsruimte.

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

1 5 10 15 20 25 30

ρ-

k

0.00

0.20

0.40

0.60

0.80

1.00

1 5 10 15 20 25 30

β
E

k

500

2k

8k

caida

Figuur 2. LBFR: gemiddelde stretch ρ̄ (boven) en linkloadbalancingmetriek
βE (beneden) in functie van de dimensie k van de inbeddingsruimte.

dat actief belasting spreidt kan er toch verbeterd loadba-
lancinggedrag waargenomen worden indien k groter wordt.
Dit is mogelijks het resultaat van het bestaan van meerdere
wortelknopen welke het wortelopstoppingseffect splitsen over
k verschillende wortels. Ook het bestaan van additionele
korte paden tussen verschillende bron- en bestemmingsknopen
leidt tot een mindere afhankelijkheid van de wortelknoop als
doorvoerhaven van netwerkverkeer tussen verschillende delen
van het netwerk.

Figuur 2 toont het vorige experiment toegepast op LBFR.
In figuur 2 (boven) kan een sterke stijging van de stretch
waargenomen worden als k verhoogd wordt. Omdat er meer
inbeddingen beschikbaar zijn, zijn er meer forwardingkandi-

daten die de κ-beperking respecteren (κ moet strikt monotoon
dalend zijn langs het gevolgde routeringspad). Elke knoop
focust nu volledig op het balanceren van verkeer op zijn
uitgaande lijnen waardoor de stretch wordt opgeofferd. In
figuur 2 (beneden) wordt de βE-ratio getoond. Als k groter
wordt schiet βE snel naar 1, wat bijna perfect loadbalancing-
gedrag indiceert. Hoewel de βE-ratio toont dat het verkeer
evenredig verspreid is over alle links betekent dit niet dat het
de som van het verkeer in alle links van het netwerk op zijn
laagste punt is. Omdat de stretch met een grote factor omhoog
gaat zal het totale netwerkverkeer eveneens stijgen. Omwille
van deze reden is het nuttig de stretch een hogere prioriteit
toe te kennen dan het loadbalancinggedrag.

1.00

1.50

2.00

2.50

3.00

3.50

4.00

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ρ-

γ

500

2k

8k

caida

0.00

0.20

0.40

0.60

0.80

1.00

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

β
E

γ

Figuur 3. HFR: gemiddelde stretch ρ̄ (boven) en linkloadbalancingmetriek
βE (beneden) in functie van een variërende γ waarde.

Nu wordt HFR, het algoritme dat GFR en LBFR verenigt,
geëvalueerd. Indien de parameter γ in vgl. (7) naar 0 verscho-
ven wordt, wordt GFR benaderd. γ naar 1 schuiven resulteert
in LBFR. Daarom wordt in figuur 3 een sensitiviteitsanalyse
uitgevoerd van de γ parameter. Figuur 3 (boven) toont dat
bij lage γ waarden ρ̄ eveneens laag wordt, zoals bij GFR.
Daarna blijft de stretch stabiel voor 0 ≤ γ ≤ 0.5. Hierna
begint ρ̄ sterk te stijgen als γ → 1. Dit is consistent met het
benaderen van LBFR door HFR. De βE waarden in figuur 3
(beneden) tonen aan de het verschuiven van γ tussen zijn
twee extreme waarden het verwachte resultaat teruggeeft. Iets
bijzonder gebeurt er aan de rechterzijde van γ = 0. Er kan
een stap waargenomen worden zodat βE plots stijgt. Indien we
kijken naar figuur 3 (boven) kan zo een stap niet waargenomen
worden voor ρ̄. Dit kan verklaard worden door het feit dat bij
de forwardingbeslissing van een knoop vele kandidaten een
gelijke afstand tot de bestemming bezitten. Hierdoor maakt
het niet uit welke knoop als volgende knoop geselecteerd
wordt met betrekking tot de stretch. Indien belastingsinfor-
matie gebruikt wordt kan er een grote verbetering verkregen
worden door de links met een lage huidige belasting voor te
nemen.

90%

92%

94%

96%

98%

100%

0% 5% 10% 15% 20% 25% 30%

s
u

c
c
e

s
ra

ti
o

percentage gefaalde links

b
nb
nb k=1

Figuur 4. Fouttolerantie: de x-as stelt de fractie van het aantal links die
verwijderd werden voor ten opzichte van het totale aantal links dat verwijderd
kan worden (|E| − |V | + 1) zonder de graaf te ontbinden. HFR (γ = 0.1,
α = 1, k = 15) met (b) en zonder (nb) backup-mechanisme werd getest
naast GFR met een enkele embedding.

In figuur 4 wordt de routeringssuccesratio van het HFR
systeem met γ = 0.1, α = 1 en k = 15 getoond.
Daarnaast wordt ook HFR gecombineerd met een backup-
routeringssysteem [18] weergegeven en GFR met k = 1. Alles
werd uitgevoerd op een scale-freenetwerk met 500 knopen.
Links werden verwijderd op probabilistische wijze zodat het
falen van de links evenredig verspreid werd over het gehele
netwerk. In de figuur kan opgemerkt worden dat HFR gemak-
kelijk uit te rusten is met een backup-mechanisme waardoor
het een routeringssuccesratio van 100% kan bereiken, zelfs
indien er een groot aantal links niet beschikbaar zijn. Maar
zelfs zonder backup-mechanisme is HFR in staat succesratio’s
van meer dan 97% te bereiken indien er tot 30% van de
mogelijke links faalt. Dit is een enorme vooruitgang ten
opzichte van GFR met k = 1. Dit kan verklaard worden door
het feit dat meerdere inbeddingen meer mogelijke paden van
bron tot bestemming aanbieden. Dit in combinatie met het
loadbalancingmechanisme van HFR maakt het algoritme op
natuurlijke wijze zeer fouttolerant.

VII. CONCLUSIE

In dit werkstuk werd een theoretisch raamwerk gebouwd
dat diende als basis voor de ontwikkelde familie van geo-
metrische routeringssytemen, genaamd Forest Routing (FR).
Een strikt greedy aanpak (GFR) werd gecombineerd met een
loadbalancingstrategie (LBFR) wat resulteerde in HFR. In
HFR worden zeer korte routeringspaden gecombineerd met
een hoge loadbalancingfactor. Dit zijn twee eigenschappen die
voorheen niet als compatibel gepercipieerd werden. Door de
lokaliteit van de forwardingbeslissingsprocedure in HFR is dit
algoritme hoogst schaalbaar wat betreft de geheugenvereisten
van routers. Hierdoor is het robuust ten opzichte van een
steeds groeiend aantal AS’en, wat vandaag waargenomen kan
worden.

Voorts heeft HFR voordele karakteristieken zoals inherente
fouttolerantie waardoor het beter kan omgaan met een zwaar
beschadigd netwerk. Zelfs bij foutratio’s van 30% kunnen suc-
cesratio’s van meer dan 97% gegarandeerd worden. Indien het
systeem uitgerust wordt met een backup-routeringsalgoritme
wordt deze succesratio zelfs 100% bij een zwaar aangetast
netwerk.

DANKWOORD

Dit werk was uitgevoerd gebruik makende van de Stevin
Supercomputer Infrastructuur van Universiteit Gent, bekostigd
door Universiteit Gent, de Herculesstichting en de Vlaamse
Overheid – departement EWI. Dit werk is deels bekostigd
door de Europese Commissie via het EULER project (sub-
sidie 258307), deel van het Future Internet Research and
Experimentation (FIRE) objectief van het Seventh Framework
Programme (FP7). Om de verschillende routeringsalgoritmen
te visualiseren werd er gebruik gemaakt van het visualisatie-
raamwerk Gephi [19].

REFERENTIES

[1] A. Narayanan, “A survey on BGP issues and solutions,” CoRR, vol.
abs/0907.4815, 2009.

[2] F. Papadopoulos, D. Krioukov, M. Bogua, and A. Vahdat, “Greedy
forwarding in dynamic scale-free networks embedded in hyperbolic
metric spaces,” in INFOCOM, 2010 Proceedings IEEE, 2010, pp. 1–9.

[3] Y. Yu, R. Govindan, and D. Estrin, “Geographical and energy aware
routing: a recursive data dissemination protocol for wireless sensor
networks,” Energy, vol. 463, 2001.

[4] K. Zeng, K. Ren, W. Lou, and P. J. Moran, “Energy aware efficient ge-
ographic routing in lossy wireless sensor networks with environmental
energy supply,” Wirel. Netw., vol. 15, no. 1, pp. 39–51, Jan. 2009.

[5] J. Zhang, Y.-p. Lin, M. Lin, P. Li, and S.-w. Zhou, “Curve-based greedy
routing algorithm for sensor networks,” in Proceedings of the Third
international conference on Networking and Mobile Computing, ser.
ICCNMC’05. Berlin, Heidelberg: Springer-Verlag, 2005, pp. 1125–
1133.

[6] N. Carlsson and D. L. Eager, “Non-euclidian geographic routing in
wireless networks,” Ad Hoc Netw., vol. 5, no. 7, pp. 1173–1193, Sep.
2007.

[7] F. Li, S. Chen, and Y. Wang, “Load balancing routing with bounded
stretch,” EURASIP J. Wirel. Commun. Netw., vol. 2010, pp. 10:1–10:16,
Apr. 2010.

[8] L. Popa, A. Rostamizadeh, R. Karp, C. Papadimitriou, and I. Stoica,
“Balancing traffic load in wireless networks with curveball routing,” in
Proceedings of the 8th ACM international symposium on Mobile ad hoc
networking and computing, ser. MobiHoc ’07. New York, NY, USA:
ACM, 2007, pp. 170–179.

[9] M. Tang, H. Chen, G. Zhang, and J. Yang, “Tree cover based geographic
routing with guaranteed delivery,” in Communications (ICC), 2010
IEEE International Conference on, 2010, pp. 1–5.

[10] J. Newsome and D. Song, “Gem: graph embedding for routing and data-
centric storage in sensor networks without geographic information.”
ACM Press, 2003, pp. 76–88.

[11] E. Chávez, N. Mitton, and H. Tejeda, “Routing in wireless networks
with position trees,” in Ad-Hoc, Mobile, and Wireless Networks, ser.
Lecture Notes in Computer Science, E. Kranakis and J. Opatrny, Eds.
Springer Berlin Heidelberg, 2007, vol. 4686, pp. 32–45.

[12] A. Korman, D. Peleg, and Y. Rodeh, “Labeling schemes for dynamic
tree networks,” in STACS 2002, ser. Lecture Notes in Computer Science,
H. Alt and A. Ferreira, Eds. Springer Berlin Heidelberg, 2002, vol.
2285, pp. 76–87.

[13] A. Rao, S. Ratnasamy, C. Papadimitriou, S. Shenker, and I. Stoica,
“Geographic routing without location information,” in Proceedings of
the 9th annual international conference on Mobile computing and
networking, ser. MobiCom ’03. New York, NY, USA: ACM, 2003,
pp. 96–108.

[14] R. Kleinberg, “Geographic routing using hyperbolic space,” in IN-
FOCOM 2007. 26th IEEE International Conference on Computer
Communications. IEEE, 2007, pp. 1902–1909.

[15] H. Velayos, V. Aleo, and G. Karlsson, “Load balancing in overlapping
wireless LAN cells,” in Communications, 2004 IEEE International
Conference on, vol. 7, 2004, pp. 3833–3836 Vol.7.

[16] Y. Hyun, A. Broido, and k. claffy, “Traceroute and BGP AS path incon-
gruities,” Cooperative Association for Internet Data Analysis (CAIDA),
Tech. Rep., Mar 2003.

[17] A.-L. Barabási and R. Albert, “Emergence of scaling in random
networks,” Science, vol. 286, no. 5439, pp. 509–512, 1999.

[18] A. Cvetkovski and M. Crovella, “Hyperbolic embedding and routing
for dynamic graphs,” in INFOCOM 2009, IEEE, 2009, pp. 1647–1655.

[19] M. Bastian, S. Heymann, and M. Jacomy, “Gephi: An open source
software for exploring and manipulating networks,” 2009.

Contents

Acronyms xvii

1 Introduction 1
1.1 The Internet architecture . 1
1.2 The Border Gateway Protocol . 3
1.3 Geometric routing . 5
1.4 Reader’s guide . 5

2 Background 8
2.1 Physical coordinates . 8
2.2 Virtual coordinates . 12

2.2.1 General concepts . 12
2.2.2 Iterative graph embeddings . 14
2.2.3 Structured graph embeddings . 18

2.3 AS-level Internet . 19
2.3.1 Topology . 20
2.3.2 Traffic models . 23

2.4 Load balancing . 24
2.4.1 Mechanisms . 24
2.4.2 Metrics . 26

2.5 Routing fault-tolerance . 28
2.6 Conclusion . 28

3 Routing simulator 30
3.1 General . 30
3.2 Architecture . 31
3.3 Routing behaviour . 35
3.4 Running experiments . 36
3.5 Modularity and extensibility . 37
3.6 Challenges . 38

4 Preliminary research 39
4.1 Simulated Annealing Label Trees . 40

4.1.1 Election procedures . 40
4.1.2 Anchor node election . 41
4.1.3 Graph embedding procedure . 43
4.1.4 Relaxation of the embedding . 45
4.1.5 Results of applying Simulated Annealing Label Trees (SALT) to generic net-

works . 47
4.2 Structured embeddings . 48

4.2.1 Virtual Polar Coordinate Routing (VPCR) 48
4.2.2 Hyperbolic routing . 50

xix

CONTENTS xx

4.2.3 Routing with Position Trees (RTP) . 51
4.2.4 Comparison . 52

5 Forest Routing 53
5.1 Introduction . 53
5.2 Foundation . 54

5.2.1 Tree space . 54
5.2.2 Tree metric space . 56
5.2.3 Routing . 57
5.2.4 Recapitulation . 57

5.3 Load balancing . 57
5.3.1 Multiple embeddings . 58
5.3.2 Extension to an m-hop neighbourhood . 64
5.3.3 Recapitulation . 66

5.4 Graph embedding procedure . 67
5.4.1 Root node election . 67
5.4.2 Graph embedding procedure . 68
5.4.3 Recapitulation . 73

5.5 Network dynamics . 73
5.5.1 Non-uniform link capacities . 73
5.5.2 Fault-tolerance . 74
5.5.3 Changing topology . 77
5.5.4 Recapitulation . 78

5.6 Complexity analysis . 78
5.6.1 Coordinate size . 79
5.6.2 Root election time . 79
5.6.3 Tree growing time . 80
5.6.4 Router processing time . 80
5.6.5 Recapitulation . 82

5.7 Conclusion . 83

6 Results and discussion 84
6.1 Forest Routing: greedy variant (GFR) . 84

6.1.1 Sensitivity analysis: tree space dimension k 84
6.2 Forest Routing: load balanced variant (LBFR) . 88

6.2.1 Sensitivity analysis: tree space dimension k 88
6.3 Forest Routing: hybrid variant (HFR) . 92

6.3.1 Sensitivity analysis: trade-off function γ-parameter 92
6.3.2 Sensitivity analysis: trade-off function α-parameter 96
6.3.3 Effect of an m-hop neighbourhood . 100
6.3.4 Graph embedding procedures . 101
6.3.5 Employing non-uniform link capacities . 105
6.3.6 Fault-tolerance . 108
6.3.7 Embedding regeneration procedure . 111

7 Conclusions and future work 113
7.1 Conclusions . 113
7.2 Future work . 114

A Benchmark networks 116

Bibliography 118

List of Figures 125

CONTENTS xxi

List of Tables 128

List of Algorithms 129

Acronyms

AE anchor node election 54, 67, 101, 102
AS Autonomous System 1–5, 20–23, 29, 113, 116
ASN Autonomous System Number 3, 4

BA Barabási-Albert 22
BFM breadth-first mode 54, 68, 69, 73, 80, 82, 101–105, 111
BFRM breadth-first redundant mode 54, 68, 73, 80, 82, 101–105,

111
BGP Border Gateway Protocol xix, 3–5, 19–21, 29, 113–115
BVR Beacon Vector Routing 17

CALB congestion-aware load balancing 73, 105–108, 126
CCDF complementary cumulative distribution function 22, 23
CPU central processing unit 30, 37
CSL Circular Sail Routing 25

DNS Domain Name System 78

ECMP equal-cost multi-path 4

FM first mode 54, 68, 80, 82
FR Forest Routing 39, 52–54, 58, 67, 73–79, 82, 83, 113–115

GEAR Geographic and Energy Aware Routing 24
GFR Greedy Forest Routing 54, 58, 59, 63, 64, 66, 67, 80, 83–89,

91, 92, 96, 102, 104, 106, 107, 110, 113
GG Gabriel graph 12
GLIDER Gradient Landmark-Based Distributed Routing for Sensor

Networks 17
GLP Generalized Linear Preference 22
GP Gravity-Pressure 28
GPS Global Positioning System 9, 13, 15
GPSR Greedy Perimeter Stateless Routing 11, 12, 24

xxii

Acronyms xxiii

GPU graphics processing unit 30
GUI graphical user interface 30, 31

HDE highest-degree node election 54, 67, 101, 102
HFR Hybrid Forest Routing 54, 63, 64, 66, 67, 76, 81–83, 92–101,

106–113, 126
HKE highest-key node election 54, 67, 85, 88, 96, 97, 100–103,

106, 108, 112
HPC high-performance computer 36–38, 84

IG Interactive Growth 22
IGP interior gateway protocol 2
IP Internet Protocol 3, 22
ISP Internet service provider 1, 2
ITM Interdomain Traffic Matrix 23

JUNG Java Universal Network/Graph Framework 30, 38

LAN Local Area Network 1
LB load balancing 73
LBFR Load Balanced Forest Routing 54, 59–64, 67, 83, 88–92, 96,

104, 105, 113
LBLSP Load Balanced Local Shortest Path 25
LSP Local Shortest Path 25

MAC Media Access Control 40

PFP Positive-Feedback Preference 22
PIC Practical Internet Coordinates 17
PSO particle swarm optimization 16, 43
PSVC Particle Swarm Virtual Coordinates 16, 40

RCC rich-club connectivity 21, 22
RIB Routing Information Base 3
RM redundant mode 54, 68, 69, 71–73, 80, 85, 88, 92, 97, 100–

106, 108, 111, 112
RNG relative neighbourhood graph 12
RTP Routing with Position Trees xx, 19, 40, 51–54
RTT round-trip time 17

S4 Small State and Small Stretch Routing Protocol 17
SA simulated annealing 43–45

Acronyms xxiv

SALT Simulated Annealing Label Trees xix, 35, 40, 41, 43, 45, 47,
48, 53, 67, 113

TCGR Tree Cover Based Geographic Routing with Guaranteed
Delivery 58

UDG unit-disk graph 8, 15, 18, 20, 24–28, 39, 42, 47, 50, 92, 96,
116

VCap Virtual Coordinate assignment protocol 17
VPCR Virtual Polar Coordinate Routing xix, 18, 26, 48, 49, 52,

53
VPCS Virtual Polar Coordinate Space 26

WDG Weighted Distance Gain 25
WSN wireless sensor network 5, 8, 15, 20, 24–26

Chapter 1

Introduction

The Internet is becoming an indispensable communication medium for people, businesses and
government institutes.1 In a world where information is being created and processed at an unseen
speed, communication on a global scale is a necessity. As a result the Internet is more and more
being thought of as a commodity good, much like electricity. The super-linear trend in growth to
be witnessed today imposes high routing scalability requirements. Only the Internet is built on
design principles from 40 years ago when the number of network gateways was multiple orders of
magnitude lower.2 Therefore a dire need exist for more scalable and flexible routing mechanisms
to prevent the Internet from bursting at the seams.

1.1 The Internet architecture

Much of the Internet communication takes place under the form of data transfer between source-
destination host pairs. This data is transferred by physical lines after it has been divided into
small packets. However, packets are not sent directly to their destination. They first traverse a
set of intermediary devices that are thought to close the distance to the end-point. These devices
are termed routers. In this fashion packets traverse multiple hops before reaching their target. To
be able to support the massive data transfer demands, a well-built Internet architecture exists.
It can be represented as number of hierarchical layers, each at a different level of granularity, as
shown in Figure 1.1. At the most detailed level reside small Local Area Networks (LANs). This
type of network interconnects different general purpose computing devices via a wired or wireless
transmission medium and spans a small geographical location such as a house or a company.

At a slightly higher level the access networks are encountered, connecting Internet users to their
Internet service provider (ISP). Next there are the so-called aggregation networks. From this
layer on, powerful routers are necessary to forward traffic to its destination. At the heart there
are the core networks, which the Internet backbone network is a part of, interconnecting various
independent networks, called Autonomous Systems (ASs). They are autonomous in the sense
that they are being managed by separate administrative units. Rekhter et al. (2006) define an
Autonomous System more formally as

1Zahariadis et al. (2011)
2Pan et al. (2011), Zahariadis et al. (2011)

1

CHAPTER 1. INTRODUCTION 2

A set of routers under a single technical administration, using an interior gateway
protocol (IGP) and common metrics to determine how to route packets within the AS,
and using an inter-AS routing protocol to determine how to route packets to other ASs.

By connecting multiple ASs in a peering relationship we obtain a network of networks, an inter-
network, hence coined the “Internet”. Each of these ASs is assigned a unique number, its AS
number. At the time of writing, there are nearly 45.000 unique ASs.3 It is packet forwarding, or
routing, in this backbone network that forms the main point of focus of this thesis.

Figure 1.1: A schematic overview of the Internet architecture. From left to right can be seen: backbone
network, aggregation network, access network and LAN. The dashed line crossing the vertical
solid line represents the peering relationship between the different types of networks.

The previously mentioned core networks can in their turn be further divided into a hierarchical set
of tiers. On the lowest level there are the tier-3 networks consisting of fixed or wireless networks
spanning a specific geographical area such as a neighbourhood. It is said that these networks are
engaged in a peering relationship with tier-2 networks. In such a peering relationship both networks
are typically connected by a router, here called a border gateway. These act as transit gateways
for traffic flows between both networks, possibly applying traffic conversions. The highest level is
formed by the Internet backbone, an aggregation of tier-1 networks. Only a few ISPs control these
networks that span large geographic areas.4

To be able to reason about novel routing procedures, the structure of the Internet backbone has to
be captured. Thus a remaining question is what the topology of the inter-AS network looks like.
Researchers have investigated this by retrieving routing tables stored by each border gateway.5

Though it should be noted that some of the extracted data is skewed as ASs might use multiple
AS numbers to identify themselves. The topology appears to be scale-free.6 In such networks
the degree distribution follows a power-law P (k) ∼ k−γ with a parameter γ and k the number
of edges incident to a certain vertex.7 This gives rise to some interesting properties such as the
most connected AS being connected to 10% of the total network, which can have a negative effect
on routing fault-tolerance, its power to withstand node or link failures. Disconnection of high-
degree nodes might partition the network. Other findings are that the most connected nodes
seem to cluster and form a nearly complete graph in which the shortest paths are relatively small,
called the small-world phenomenon.8 Networks with this emerging property are called small-world

3Bates et al. (2013)
4Tavernier (2012)
5Chi et al. (2008)
6Newman (2003)
7Goh et al. (2002)
8van Steen (2010)

CHAPTER 1. INTRODUCTION 3

networks and are characterised by the fact that they have a small network diameter.9 Therefore
this work will target scale-free networks of varying size.

1.2 The Border Gateway Protocol

Each AS in the Internet is responsible for a number Internet Protocol (IP) routing prefixes and
is uniquely identified by an Autonomous System Number (ASN). Each AS owns one or more
border gateways that are connected in a peering relationship with other gateways. These devices
route traffic within this interconnected structure based on the Border Gateway Protocol (BGP).
Neighbouring ASs discover each other by exchanging update messages containing (AS-number,
network ID)-pairs. By doing this, gateways are able to learn new paths to other ASs. To illustrate
this: ASi sends the pair (ASi, network_idi) to a neighbouring ASj , the latter will gain knowledge
about the path between network_idi and itself. Now the receiving router can add this information
to its Routing Information Base (RIB). This is a table containing routes to each destination.
Contrary to routing tables the RIB may contain multiple routes to other ASs. However in many
cases only the shortest route is stored while others are discarded as the tables would become
excessively large.10 Although storing multiple routes is a possibility to enforce some form of
load balancing of the inter-AS traffic.11 Routing tables are used to select the next hop in the
forwarding process based on the destination network prefix. The BGP does not broadcast its full
routing table to other routers. It is a distance-vector protocol based on update messages where
only new or altered path information needs to be send. Thus, still using the same example, the
receiving border gateway is free to distribute this newly discovered path to its own neighbours by
sending a triple (ASj, ASi, network_idi).

Though being a fundamental Internet protocol, the BGP copes with several issues.12 First of all,
as the number of ASs is increasing linearly13, the number of entries in the BGP routing tables
increases more than cubically as each node needs to store information about many possible routing
paths in the network. This effect can be seen in Figure 1.2 where the number of routing prefixes
has been set out in function of the time. A prediction can be made by plotting a best-fitting curve
on top of this data. This expansive growth poses a severe scalability problem for the Internet as a
whole, because of the increasing router memory storage requirements which form a bottleneck for
the forwarding layer.14 When the Internet was first introduced, it was never intended to be able
to deal with such a high number of ASs. Therefore there is a dire need for a more scalable routing
approach that includes favourable characteristics such as automatic load-balancing and scalability,
a system that truly makes use of the distributed properties of the Internet.

Another problem is that of path instability. Routing tables need to be continuously adjusted to
reflect changes in the network. Examples of this are links failing, nodes joining or routers rebooting.

9Amaral et al. (2000)
10van Steen (2010)
11Bu et al. (2004)
12Narayanan (2009)
13Another good fit is an exponential trend with a very low exponent value (0.03), which is —as indicated by

Dhamdhere & Dovrolis (2011)— very close to linear.
14Papadopoulos et al. (2010)

CHAPTER 1. INTRODUCTION 4

 0

 100k

 200k

 300k

 400k

 500k

 600k

 700k

 800k

 900k

 1M

 1989 1992 1995 1998 2001 2004 2007 2010 2013 2016 2019 2022

a
c
ti
v
e

 p
re

fi
x
e

s

year

fitted curve
raw data

Figure 1.2: The BGP AS router prefix size is plotted in blue. The dotted red line is a fitted curve through
this data that shows the trend; the fitted curve is f(x) = a(x− b)γ with x the year, f(x) the
BGP AS prefix entry count; a = 0.867391, γ = 3.73411, b = 1979.31.

This can cause routes to flap, which means that they are continuously added and removed from the
BGP tables. Route flapping damping mechanisms are implemented to counter this effect. However,
these have a negative effect on the BGP convergence time, the time it takes for all gateways to
obtain a consistent view of the network through their routing tables. It has been shown that this
BGP convergence time is in the order of minutes.15 Another reason for this high convergence time
is its path exploration procedure. When a link fails that causes some destination to be cut off from
a certain router, this router will start exploring alternative paths in order to reach this destination.
Only when all alternative paths have been explored will it decide which path to store in its routing
table, or announce that it is unable to reach the destination, which can take a large amount of
time. A novel routing mechanism should therefore be able to converge sufficiently fast.16

Automatic load balancing is a third issue. The BGP has only limited support to balance traffic over
multiple links in order to avoid link congestion. Manual configuration is possible by the network
administrator by means of routing policies, but this is tedious and prone to misconfiguration.17 For
example: assume a gateway connected to two other gateways that are connected to a different part
of the network. This first gateway may be set-up to balance load by splitting up the advertised
prefix, which can be done by applying a different subnet mask, e.g. by splitting 1.2.3.4/5 into
two parts 1.2.3.4/6, each with their own set of ASNs. Although this leads to load balancing,
several issues arise: (i) the number of routes advertised increases; (ii) the number of entries in the
forwarding table increases; (iii) load is balanced in a static way, there is no adaptive behaviour;
(iv) it is very complex to set-up correct load balancing policies.
When BGP has equal-cost multi-path (ECMP) capabilities, load balancing is not achieved by
splitting prefixes, but rather by storing multiple paths in the forwarding table. Traffic can now be
dynamically balanced over these multiple routes. A downside however is the increase in forwarding
entries, which is already a weakness of BGP.18

15Oliveira et al. (2009)
16Bürkle (2003)
17Caesar & Rexford (2005)
18Halpern & Jakma (2006)

CHAPTER 1. INTRODUCTION 5

1.3 Geometric routing

As previously mentioned, the current BGP will face great difficulties in supporting the vast growth
of the Internet. Hence there is exists a large research interest in alternative routing systems that
are scalable by nature. Over the years a new routing paradigm has emerged, termed geometric
routing. Herein every network, represented by a graph, is embedded into a mathematical space.
In this graph embedding every vertex is assigned a specific set of coordinates that will serve as a
basis for routing decision making. Routers will use the coordinates that uniquely identify each
distinct node to choose what node to forward traffic to. To do this they make use of a distance
metric present in the space. For example, the space may be the two-dimensional Euclidean space
represented by coordinates in R2 with a distance metric corresponding to the Euclidean distance
between two point represented by two sets of coordinates. Every router will then try to send traffic
to one of its neighbours that is closer to the destination in terms of distance in the metric space.
This behaviour is depicted in Figure 1.3.

The roots of geometric routing trace back to ad-hoc wireless networks and wireless sensor networks
(WSNs) in which each routing unit (sender-receiver) has limited battery power. Thus the forward-
ing decisions should be computationally inexpensive and have low state requirements. Because
much of the current research still focuses WSNs, which can be modelled as unit-disk graphs19, its
application to wired networks is still in its early days.20 Therefore the application to networks
such as the inter-connected system of ASs poses an interesting research topic. Especially when
concerning the portability of its scalable properties from unit-disk graphs to scale-free networks.

In this thesis the possibility of using geometric routing as an alternative to BGP routing will
be investigated. As most of the geometric routing systems come forth from WSNs, algorithms
targeting this type of networks will be examined first. In a later stadium, the applicability to
other types of graphs that resemble the Internet backbone more accurately will be researched.
Introducing geometric routing in the Internet backbone may solve memory scalability, but it may
lead to other problems such as the volatility of coordinates which also act as host identifiers. The
main contribution of this this is a set of geometric routing algorithms that focus on load balancing,
low average path length, fault-tolerance and scalability.

1.4 Reader’s guide

This work is structured as follows:

• Chapter 1 introduces the general concepts that are inside the scope of this work.

• Chapter 2 reviews the current research status regarding geometric routing and related
concepts. Strengths and weaknesses of various methods are weighed up.

• Chapter 3 explains the preliminary research that led up to the final routing mechanism.
19These are networks that generally have a large diameter and a low constant average node degree.
20see Chapter 2

CHAPTER 1. INTRODUCTION 6

S

N1
D

(a)

S

N2
D

(b)

S

N3

D

(c)

S

D

(d)

Figure 1.3: Geometric routing in a two-dimensional Euclidean plane based on the Euclidean distance:
S is the source node; D is the destination node. The current node is depicted in red while
its possible neighbours (and links to them) are painted in blue. From (a) to (d) a message
traverses the network as each node tries to send the message as far as possible to D.

CHAPTER 1. INTRODUCTION 7

• Chapter 4 explains the main contribution of this thesis, a geometric routing mechanism
targeting the Internet backbone.

• Chapter 5 shows the results of conducted experiments and discusses them.

• Chapter 6 gives a conclusion of this thesis and proposes future work.

In Table 1.1 the most commonly used symbols in this thesis are summed up along with their
meaning. These symbols are used as consistently as possible throughout this thesis to avoid any
confusion.

Table 1.1: Commonly used symbols in this thesis

symbol meaning

?̄ average
σ? or σ standard deviation
| ? | set size or absolute value
ρ stretch
βV or βE node or link β-ratio for load balancing
βV,Π or βE,Π node or link β-ratio for load balancing for shortest path Π
λV or λE node or link λ-ratio for load balancing
λV,Π or λE,Π node or link β-ratio for load balancing for shortest path Π
δ(u, v) distance between u and v in metric space (?, δ)
τ τ -ratio for tree redundancy
Ed d-dimensional Euclidean space
Hd d-dimensional hyperbolic space
G = (V,E) graph G with vertex set V and edge set E
T = (V,E) tree T with vertex set V and edge set E
N(u) set of adjacent vertices of u
I(u) set of incident edges of u
Π(u, v) or Π shortest path (between u and v)
P (u, v) or P path (u, . . . , v)
dG(V) generic degree in graph G of a vertex v ∈ V
δΠ(u, v) shortest path distance (hops) between u and v
d graph diameter
h hop count
P set of all possible paths in a certain graph
α, β, γ commonly used as tunable parameter
ξ link propagation delay bounds
µ node processing time bounds
K(u) key of u, a unique identifier of u taken from a set K(V)
tproc node processing delay
tinit procedure initialisation delay
troot root election delay
tprop link propagation delay

Chapter 2

Background

This chapter introduces the concepts of geometric routing. To be able to frame this work in a larger
global scientific view, related work concerning geometric routing is investigated. Nevertheless the
existence of an ample body of work dealing with such routing mechanisms, much research is yet
to be devoted regarding their application to wired networks. Current researcher’s main point of
focus remains WSNs, interconnected sets of radio sender-receivers with a fixed transmission range.
Contrary to wired networks WSNs can be accurately modelled as unit-disk graphs (UDGs). On
top of that, due to their wireless nature, an extra mobility factor has to be taken into account
as nodes are able to move freely in space, a property that may be neglected for wired networks.
The following sections will set forth a solid theoretical base for geometric routing, rooted in these
WSNs. Afterwards the application to wired networks, and ultimately the Internet backbone, will
be examined. The trade-off between routing scalability, load balancing and average path length
will play a central role.

2.1 Physical coordinates

Geometric routing originally emerged from the search for efficient routing mechanisms in large-
scale grid networks.1 However since then it has been generally applied to WSNs.2 Herein every
node is a sender-receiver beacon with a limited radio transmission range. The nodes are scattered
over a geographic area. This allows the network to be modelled as UDGs (see Definition 2.1) with
a unit corresponding to this transmission range (this is depicted in Figure 2.1).

Definition 2.1. A graph G = (V,E) is a unit-disk graph (UDG) if every node is assigned a set
of two-dimensional Euclidean coordinates and ∀u, v ∈ V : v ∈ N(u) ⇔ δ(u, v) ≤ 1 with δ the
Euclidean distance between two points.3

1Finn (1987)
2The earliest modern applications found were those of Karp & Kung (2000) and Karp (2000). Although Finn

(1987) applied greedy routing to wired networks, they were not modelled as scale-free networks. From what was
described in this article it can be concluded that the author also based his research on grid networks, which have
much in common with UDG-like networks, such as a constant node degree, a large diameter and its ability to be
embedded into a two-dimensional Euclidean plane.

3Kuhn et al. (2004)

8

CHAPTER 2. BACKGROUND 9

C

N
D

Figure 2.1: A network of sensor nodes: the dashed line represents C’s radio range, the solid line is the
set of points equidistant to D. Node C may send its traffic to node N when trying to close
as much distance as possible to destination node D.

Because of their limited transmission range, the sensor devices rely on each other to forward data
packets across the network. A logical approach is that every node tries to send a packet as far as
possible in the direction of the destination node. Thus the notion of distance naturally emerges
from this type of routing schemes. To be able to send a packet closer to its destination every node
needs to know the location of its reachable neighbours. Therefore either Global Positioning Systems
(GPSs) were added to the nodes or its coordinates were manually inserted. Nodes could thus gain
knowledge of their own position. By means of message passing nodes inform their neighbours
about their position. Upon receipt of such coordinate information messages, they generate a small
routing table composed of an identifier and the received set of coordinates. As every has node only
a limited set of neighbours unrelated to the network size (when considering a constant density),
the storage requirements are limited. This is an important observation as most sensor devices
only have a limited battery lifetime and are thus restricted by low computational and storage
complexity.
To conceptualise, a geometric routing mechanism is simply the assignment of coordinates in a
certain space to network nodes. In the previous example these are mostly Cartesian coordinates
R2. To decide which neighbour to forward a packet to, the destination coordinates have to be sent
along with the packet itself. And as each node has its own set of coordinates, these function as
unique node identifiers. Routers inside the sensor devices will calculate their own distance based
on a simple Euclidean distance metric. If node c has coordinates (c0, c1) and the destination d has
coordinates (d0, d1) the distance is defined as the distance between the two points corresponding
to these coordinates in the Euclidean two-dimensional space:

δ(c, d) =
√

(c0 − d0)2 + (c1 − d1)2 (2.1)

Each router will inspect its routing table, consisting of identifier-coordinates doubles of neighbour-
ing nodes, and select the neighbour that has a distance (to the destination) fulfilling a certain
selection criterion, e.g. the lowest distance to the destination. Most of these original routing mech-
anisms only allow distance-decreasing paths, which makes it easier to guarantee packet delivery.

The method for selecting the next forwarding hop of a packet (routing decision making) leaves
much freedom. Lots of the earliest versions of geometric routing were termed as greedy routing.

CHAPTER 2. BACKGROUND 10

Here every path is distance-decreasing. Traffic is routed to the neighbour with the lowest distance
to the destination node, based on Eq. (2.1), called greedy forwarding. This is also illustrated in
Figure 2.1. The following definition defines this term more formally.

Definition 2.2. In a graph G = (V,E) with a given distance function δ : V × V → R+, greedy
forwarding entails the following decision: given a destination node d, a node u with neighbours
N(u) forwards a message to its neighbour v ∈ N(u) such that δ(v, d) = minw∈N(u)δ(w, d).

Although greedy forwarding is one of the most-used neighbour selection mechanisms, it is not the
only possibility. Other selection variants exist, as shown in Figure 2.2 with each their own specific
advantages, according to the situation they are used in.

S D

A

B

C
E

Figure 2.2: Different types of geometric next hop selection mechanisms: a packet arriving at S can
be forwarded to multiple neighbours within its transmission range. Node A: nearest with
forwarding progress, B: most forwarding progress within radius by Takagi & Kleinrock (1984),
C: compass routing II by Kranakis et al. (1999) and E: greedy routing.

All the routing types in Figure 2.2 have one thing in common: packets always have to travel along
a distance-decreasing path to the destination. This reveals a downside of geometric routing: its
susceptibility to dead ends, also termed voids. Ideally while traversing the path from source to
destination every node should be able to find a neighbour with a lower distance to the destination
than itself. However, it is possible that no such neighbour exists. In this case the routing of a
packet gets stuck which causes it to be dropped. Another way of saying this is that a distance local
minimum has been reached, which can be formally defined by Definition 2.3. Figure 2.3 shows
such a local minimum for an embedding into a two-dimensional Euclidean space with the distance
function δ being the Euclidean distance. Also note that in case forwarding progress was used as a
selection criteria (see Figure 2.2), the packet would not encounter a void. This is indicated by the
dashed red lines in Figure 2.3.

Definition 2.3. For a graph G = (V,E) with a given distance function δ : V × V → R+ and a
destination vertex d ∈ V , a vertex u ∈ V is a considered to be a local minimum when 6 ∃n ∈ N(u) :
δ(n, d) < δ(u, d), with N(u) ⊆ V being the set of neighbours of u.

CHAPTER 2. BACKGROUND 11

A

D

B

S

Figure 2.3: A local minimum in the distance landscape for greedy routing: both of S its neighbouring
nodes A and B are further away from the destination D than S itself. The red dotted
line indicates that when using forwarding progress as a selection criterion there is no local
minimum at S.

To elevate the issue of voids many algorithms have been developed to use in conjugation with
geometric routing. A pioneering mechanism is called face routing, based on the work of Kranakis
et al. (1999), in which it was called Compass Routing II. It was first introduced in a routing
mechanism called Greedy Perimeter Stateless Routing (GPSR).4 GPSR has the ability to route
packets in two distinct routing modes: greedy mode and face mode. Packets are forwarded towards
their destination, whose coordinates are encoded in the packet header, by following a distance-
decreasing path with a greedy selection mechanism. Whenever a void is reached in a node v, the
routing system switches to face mode for that particular packet. It also records the current distance
to the destination δ(v, d), at which it got stuck in the local minimum. Face mode remains active
until a node w is reached whose distance δ(w, d) is lower than the distance δ(v, d) recorded in the
packet header. At that exact moment greedy mode is re-entered, because the packet has overcome
the void. Figure 2.4 illustrates the mechanics of face routing. While in face mode, packets are
send in a counter-clockwise fashion without crossing the direct line between source and destination,
which can be calculated solely based on the coordinates of both nodes.

S D

Figure 2.4: Face routing: the blue lines represent the path followed while using face routing, the red lines
are edges crossing the straight line between source S and destination D and the green arrows
represent the direction of face routing on each face.

A limiting factor of face routing is that it solely works on planar graphs. Such a graph has
4Karp & Kung (2000)

CHAPTER 2. BACKGROUND 12

the property that it can be embedded into a plane, while none of its edges cross. As realistic
graphs rarely possess the virtue of planarity, the graph needs to be transformed. The GPSR
system achieves this planarization by calculating a Gabriel graph (GG) (see Definition 2.4 and
Figure 2.5(a)) or a relative neighbourhood graph (RNG) (see Definition 2.5 and Figure 2.5(b))
that is a sub-graph of the original graph, in a distributed fashion. Face routing is then exercised
on this sub-graph. Although the authors report high success rates, an issue raised by Bruck et al.
(2005) and Funke & Milosavljevic (2007) is the load balancing aspect of this mechanism. Face
routing concentrates traffic heavily around the void perimeters, creating severe traffic bottlenecks.

Definition 2.4. A graph G = (V,E) is called a Gabriel graph if for all vertices u and v there
exists no vertex w that resides inside the circle going through u and v with diameter uv.

Definition 2.5. A graph G = (V,E) is called a relative neighbourhood graph if an edge (u, v) only
exists between vertices u and v if δ(u, v) is less than or equal to the distance between every other
vertex w, and whichever of u and v is farther from w. ∀w 6= u, v : δ(u, v) ≤ max{δ(u,w), δ(v, w)}.

A B

C

C ′

(a) Gabriel graph: A and B can-
not be connected if there exists
a point C within the dashed cir-
cle. A point C′ outside the circle
poses no problem.

A B

C

C ′

(b) relative neighbourhood graph: A and
B can only be connected if there exists
no point C in the intersection of the two
dashed circles. A point C′ outside the cir-
cle poses no problem.

Figure 2.5: Gabriel graph and relative neighbourhood graph: the dashed circles have an arbitrary but
fixed radius.

Another system using greedy forwarding combined with face routing is GOAFR+ by Kuhn et al.
(2003), which is quite similar to GPSR. Their system differs from GPSR in the way that it switches
between greedy and face routing. It explores each face until sufficient5 face nodes have been
discovered. From this set the closest one gets selected as the next hop. The system is proven to
be asymptotically optimal in a worst-case setting and efficient on average case graphs.

2.2 Virtual coordinates

2.2.1 General concepts

The most prominent downside of using physical coordinates for geometric routing is that they
may be unavailable, or unrelated to the network topology. It is simply not guaranteed that every

5Exact criteria can be found in Kuhn et al. (2003).

CHAPTER 2. BACKGROUND 13

routing device possesses a GPS-like system. Because of this, many researchers have investigated
the use of virtual coordinate systems. These virtual coordinates can be seen as a generalisation
of the physical ones. The following definition explains virtual coordinates and its properties, as
defined by Goodrich & Strash (2009).

Definition 2.6. Let Σ be an alphabet that gives forth a set of finite-length strings σ. A coordinate
system f over a space S can be defined by the following characteristics:

• f is a mapping f : σ → S.

• f can be parametrised, assigning string of σ may depend on a fixed set of parameters.

• f is oblivious: f may only depend on the parameters of f itself and the string x ∈ σ it
assigns. It may not be dependent on other strings of σ or other points in S.

As such virtual coordinates are a more general concept than physical coordinates. They can be
manipulated more freely. It is possible, in some occasions, to eliminate the appearance of routing
voids rather than avoiding them by assigning the coordinates in a special way. This is one of the
most important aspects of geometric routing, namely achieving 100% packet delivery rate. This
special way of assigning coordinates is called a greedy graph embedding. First, a graph embedding
is the assignment of coordinates to each node of a graph as the following definition explains.

Definition 2.7. Let S be a set and G = (V,E) a graph, then an embedding of G into S is a
mapping f : V → S such that ∀u, v ∈ V : u 6= v ⇔ f(u) 6= f(v).6

In a greedy embedding of a graph G = (V,E) coordinates are assigned to vertices in a coordinate
space such that for each pair of vertices s and t there exists a neighbour of s closer to t than s

itself. Formally this can be defined by as follows.

Definition 2.8. A greedy embedding of a undirected graph G = (V,E) into a metric space (S,δ)
(see Definition 5.1 for the definition of a metric space) is a mapping f : V → S with the following
property: for every pair of distinct vertices s, d ∈ V there exists a vertex u adjacent to s such that
δ(f(u), f(d)) < δ(f(s), f(d)).7

This essentially means that coordinates are assigned in such a way that there exists a neighbouring
node that is on a distance-decreasing path to the other, for every two nodes. From this follows that
there exist no voids, thus a packet will never get stuck in a local distance minimum. This will prove
to be an important concept, as packet delivery is of utmost importance for the Internet backbone.
The construction of such a greedy embedding is not possible for every space. For example the
following K1,7 star graph shown in Figure 2.6 has no greedy embedding in R2.8

Furthermore Papadimitriou & Ratajczak postulated the following theorem.

Theorem 2.1. The bipartite graphs K1,7,K2,13, . . . ,Kr,6r+1 admit no greedy embedding into the
Euclidean plane E2.

6Rao et al. (2003)
7Kleinberg (2007)
8He & Zhang (2011)

CHAPTER 2. BACKGROUND 14

Figure 2.6: Greedy drawing of K1,7 not possible in E2 space

Determining properties about whether graphs are greedily embeddable in a certain space is a
much researched topic. For example Leighton & Moitra (2010) recently proved the Papadimitriou
& Ratajczak conjecture9 that every three-connected planar graph can be embedded in R2. This is
important as any k-connected planar graph with k > 3 has a 3-connected sub-graph. A limitation
however is that this holds only for planar graphs. Kleinberg (2007) compensated this shortcoming
by proving the following theorem.

Theorem 2.2. Every connected finite graph has a greedy embedding in the hyperbolic plane H2.

This theorem will later prove to be important when utilising structured embeddings (see Section
2.2.3). The hyperbolic plane H2 will be explained in more detail later on in Section 4.2.2. Because
geometric routing systems forward traffic based on a distance function, the paths generated are
not necessarily shortest paths. Therefore it is important to know how much the routing system
deviates from the shortest path routing scenario. Therefore an important concept is the stretch of
a routing system.

Definition 2.9. The stretch ρ of a path P (s, d) in a graph G = (V,E) with a start vertex s ∈ V
and an end vertex d ∈ V , is its number of vertices |P (s, d)| divided by the number of vertices
|Π(s, d)| with Π(s, d) the shortest path between s and d.

This means that ρ ∈ R ∧ ρ ≥ 1. A stretch of one occurs when the path P (u, v) is a shortest path
between u and v, denoted as Π(u, v). The stretch ρ thus expresses how much the observed routing
system approximates a shortest path routing mechanism.

Based on the literature research done for this thesis, it became clear that virtual coordinate systems
can be divided into two types. The first type is systems based on iterative embeddings, which will
be explained in the next section. These iterative embeddings have in common that they are
constructed by iteratively altering the assigned coordinates to optimise some sort of objective
function. The second type of system is based on structured embeddings. In these embeddings
coordinates are assigned by following a fixed underlying structure, mostly a spanning tree.

2.2.2 Iterative graph embeddings

Earlier generations of virtual coordinate-based geometric routing systems try to assign coordinates
in such a way that they approximate the underlying physical ones. These systems came forth

9Papadimitriou & Ratajczak (2005)

CHAPTER 2. BACKGROUND 15

from wireless ad-hoc networks or WSNs which had no node GPS-system available. Especially in a
distributed setting with no node conveying the grand network topology, mimicking the underlying
structure can be troublesome. Couto & Morris (2001) began to eliminate the need for nodes to
have knowledge of their exact whereabouts by only requiring that certain proxy nodes have the
ability to pin-point their exact location. Other nodes use the location information of their closest
proxy node as their own. A downside however remains the requirement for location-awareness of
—although only a limited number— nodes. Routing between local nodes and their proxies happens
in a link-state way. Geometric routing is used solely for inter-proxy routing.

The physical coordinate proxy mechanism presented by Couto & Morris (2001) allows for the
detection of voids in the network. This is done by requiring nodes to inform the source whenever
they drop a packet due to a local distance minimum. Upon receipt of such a message, the sending
proxy selects an intermediate node that resides within a certain radius from the middle between
source and destination. Until the packet has been correctly received by the destination, the sending
proxy keeps on increasing the radius hoping to find an intermediate node outside of the void range.
This system however guarantees no 100% delivery rate.

The previous system inspired Rao et al. (2003) to develop one of the first geometric routing
techniques entirely based on virtual coordinates, later nicknamed NoGeo. It is one of the earliest
in its kind and is thus used by many as a benchmark for testing the behaviour of newer routing
mechanisms.10 Their system first identifies perimeter nodes, these are nodes that lie on the border
of the network.11 It does this by electing the node that has the largest shortest path to all
previously detected perimeter nodes, in an iterative fashion.12 This shortest hop count distance is
based on the triangulation inequality, much used in the distance estimation between nodes. After
having identified the perimeter nodes, they are assigned a set of virtual two-dimensional Euclidean
coordinates. Hereafter an iterative relaxation algorithm is applied to minimise the error E between
the measured shortest path distance and the distance measured in the virtual coordinate space, as
shown by the following equation.

E =
∑
u,v∈P

(h(u, v)− δ(u, v))2 (2.2)

with P the set of perimeter nodes, δ the Euclidean distance function and h the shortest path
distance function. After the perimeter nodes have their coordinates assigned, the other nodes are
assigned theirs based on local neighbourhood information. The perimeter node coordinates set
forth a surge of coordinate assignments towards the core of the network in which each node u
calculates its coordinates by

u =
∑
v∈N(u) v

dG(u) (2.3)

with dG(u) the degree of node u. The authors report routing success rates comparable to routing
based on physical coordinates. The only downside is the need for a high number of relaxation

10e.g. Sarkar et al. (2009), Leong et al. (2007), Zhou et al. (2010)
11It is still implicitly presumed that the underlying graph is a UDG.
12Ties are broken in an arbitrary manner, such as node identifiers.

CHAPTER 2. BACKGROUND 16

iterations. Although it should be noted that this only needs to be done on at the embedding
construction time, as such it will not hinder routing performance. When building this virtual
embedding for a network that has physical coordinates available, a mediocre resemblance between
the two embeddings (virtual and physical) can be noticed. This results in mediocre routing success
rates. Other drawbacks are reported by Zhou et al. (2010): (i) the greedy success rate is low for
sparse networks while the stretch is high; (ii) the storage requirements are high as every perimeter
node has to store the hop count to every other perimeter node, resulting in a O

(
p2) complexity

with the number of perimeter nodes p of the order of O
(√
|V |
)
for a graph G = (V,E). Leong

et al. (2007) report that NoGeo also performs poorly (i) when the network has a high number of
voids and (ii) when the number of nodes is high.

Later Leong et al. (2007) designed a similar routing system called GSpring. It assumes non-
mobile nodes and behaves as a simulation of a set of physical springs. Each edge of the graph
represents a unique spring, pulling the nodes it connects towards each other based on Hooke’s law.
Much like NoGeo, first a set of perimeter nodes is elected. Afterwards these are mapped onto a
circle, whereafter nodes lying on a shortest path to these perimeter nodes are assigned interpolated
coordinates in a distributed fashion. Then, each non-perimeter node calculates a coordinate set
based on the coordinates of its neighbours. It is exactly this calculation method that is based on
a force-directed spring layout. After the initial coordinate assignment phase, a so-called region of
ownership is determined for each node. Based on Theorem 2.3 —of which the proof can be found
in Leong et al. (2007)— GSpring tries to form a greedy graph embedding.

Theorem 2.3. A graph embedding into a Euclidean space is greedy if and only if the region of
ownership of every vertex does not contain any other vertices of the graph.

An iterative coordinate update algorithm tries to push each vertex out of its neighbouring vertices’
region of ownership, increasing the greedy success rate. To prevent wild oscillation of the updating
procedure, a damping mechanism was implemented to assure procedure convergence. The authors
report that GSpring increases the face convexity of the network. This results in a decreased greedy
failure rate while still maintaining a stretch that is lower than when actual physical coordinates
are used. An issue is however the requirement for a geocast addressing mechanism which allows
the sending of packets to a specific region in the coordinate space. How this mechanism should be
implemented is left out from the article.13

Another virtual coordinate based routing mechanism is Particle Swarm Virtual Coordinates (PSVC)14.
Herein an election mechanism is used to determine a constant number of perimeter nodes. Here-
after coordinates are assigned guided by the minimisation of an error function, much like NoGeo.
After this initialisation phase, non-perimeter node coordinates are calculated by a particle swarm
optimization (PSO)15 algorithm. This population-based metaheuristic16 attempts to optimise a
criterion by running multiple optimizations independently and then capturing the emerging op-
timum. Next, coordinates are relaxed in a similar way to GSpring. Simulations show that the

13This is also mentioned by Zhou et al. (2010).
14Zhou et al. (2010)
15Originally designed by Kennedy & Eberhart (1995)
16Contrary to single-solution based mechanisms that iteratively modify a single solution (Talbi, 2009).

CHAPTER 2. BACKGROUND 17

system converges faster and attains a lower average stretch than NoGeo. And unlike GSpring, no
geocast mechanism is required.

Caruso et al. (2005) also break the shackles of requiring physical coordinates. Their system Virtual
Coordinate assignment protocol (VCap) selects multiple anchor nodes to which every other node
calculates its shortest path hop count. Based on these hop counts, every node computes its own
set of three-dimensional coordinates. As multiple nodes may have the same coordinates, zones are
defined. These zones are used to perform inter-zone geometric routing. Packet delivery within a
zone is done in an ad-hoc way (e.g. routing tables). The stretch observed is slightly higher than
when using physical coordinates. Also VCap has a major limitation which imposes that every edge
in the network should be of the same length, according to sensor nodes with a fixed transmission
range. This can however not be guaranteed for wired networks.

A Euclidean graph embedding procedure based on a big-bang simulation was proposed by Shavitt
& Tankel (2004). Their system simulates an explosion of particles driven by a force field rather
than a pile of springs —as in NoGeo-like systems— by positioning all particles at the same position
initially. It utilises a potential energy function to assign coordinates. This system has been built to
estimate delays between hosts in the Internet, e.g. to be able to select the closest mirror in a multi-
server environment, rather than geometric routing. It also makes use of a centralised calculation
method, making it unsuited for large-scale networks.

Other graph embedding schemes exist that focus on delay estimation in Internet hosts. One of
these is Vivaldi by Dabek et al. (2004). Its engine is a spring energy minimisation algorithm.
Vivaldi relies on inter-host round-trip times (RTTs) and is thus not adequate for providing a
graph embedding when no underlying routing mechanism is yet available. The same holds true for
Practical Internet Coordinates (PIC) described by Costa et al. (2004). It is quite similar to Vivaldi
but employs a different energy minimisation algorithm. PIC also incorporates security measures
to cope with malicious nodes that disrupt the network by sending false information.

Yang et al. (2010) proposes SIEMAP which assigns coordinates based on a fixed set of reference
coordinates. The difference between the distance in the virtual space and the shortest path hop
counts is minimised in an iterative fashion. A downside is the dependence on an all-to-all shortest
path calculation. This makes it unsuited for larger networks as it has a computational complexity
O(|V |2) for a graph G = (V,E).

A subsection of geometric routing algorithms based on iterative embeddings is devoted to landmark-
based routing. These systems typically use two-dimensional coordinate planes in which some nodes
are identified as so-called landmarks which act as reference points for other nodes. Examples of
such systems are the routing algorithm developed by Kleinberg et al. (2009), Small State and
Small Stretch Routing Protocol (S4) by Mao et al. (2007), Gradient Landmark-Based Distributed
Routing for Sensor Networks (GLIDER) by Fang et al. (2005) and Beacon Vector Routing (BVR)
by Fonseca et al. (2005).

Boguñá et al. (2010) propose a method to embed a graph into the two-dimensional hyperbolic
plane H2. This is done by maximising the resemblance between the embedding produced by their

CHAPTER 2. BACKGROUND 18

model and shortest path distance between nodes pairs. This basically comes down to maximising
a function that is influenced positively by two adjacent vertices having a low hyperbolic distance
and two non-adjacent vertices having a high hyperbolic distance. This is combined with a bias
towards embedding high-degree nodes closer to the centre of the hyperbolic Poincaré disk. The
main downside is that their algorithm requires centralised computation which —as reported by the
authors— can take days to finish. Though a high success rate is reported, the embedding itself is
not greedy. This article however points out that using a hyperbolic embedding is very fitting for
the inter-AS network and other scale-free networks in general.

2.2.3 Structured graph embeddings

Structured embeddings are a second type of graph embeddings. These differ from iterative em-
beddings in the sense coordinate assignment is not guided by the optimisation of an objective
function. Rather the embedding is constructed by making use of an underlying fixed structure. In
most cases this is a spanning tree of the network (see Definition 2.10) which is constructed before
the embedding procedure begins.

Definition 2.10. A spanning tree T = (V,E′) of a connected graph G = (V,E) is a graph made
up of all vertices v ∈ V and a set of edges E′ ⊆ E which contains no cycles.

Structured embedding construction procedures first generate the underlying structure and then
assign coordinates to nodes based on their relative position within this structure. Compared to
iterative coordinates they are far more restricted as only certain values of the coordinate space are
allowed. This type of embedding is generally more abstract than the first kind.

An example of a routing system using a structured embedding is Virtual Polar Coordinate Rout-
ing (VPCR)17. In this system a spanning tree is built in a distributed fashion. Hereafter polar
coordinate ranges are assigned to the network nodes which act as virtual coordinates. Each point
has a distinct polar range φn = [θa, θb]n ⊂ φn−1 = [θa, θb]n−1 where the n denotes the depth of
the node inside the tree. The ranges are assigned in such a way that nodes at the same depth
of the underlying tree never overlap (except a single point), e.g. {[0, π]n, [π, 2π]n}. The larger the
depth of the node, the smaller its range is. These ranges will act as two-dimensional coordinate
sets (x0, x1) with x0 = θa and x1 = θb. The authors do not formulate a clear-cut distance function
δ though. Because of this, routing forwarding is not entirely based on the distance between nodes.
By using polar coordinates, ever node can be located in the tree because a child’s coordinate set
is a subset of its parent’s. This yields information about whether a node resides inside a specific
sub-tree which can be used for forwarding decision making. A promising characteristic of VPCR
is that it allows smart routing. In smart routing a node can choose to send a packet closer to
the destination by forwarding to a node with a polar range closer to the destination range. This
however requires the ranges to be ordered according to the underlying topology, which is only
possible in UDGs. Much like other basic tree routing algorithms, bottlenecks form at higher levels
in the hierarchical tree. Smart routing diminishes, but not eliminates, this effect. This routing
mechanism will be discussed in greater detail in Section 4.2.1.

17Newsome & Song (2003)

CHAPTER 2. BACKGROUND 19

Goodrich & Strash (2009) show that using a so-called Christmas cactus graph for three-connected
graphs allows successful greedy forwarding. This kind of graph can be interesting as it allows more
than one path up to the node that acts as the root of the graph. This paper is however strictly
theoretical and lacks any form of practical distributed algorithm for computing and assigning the
coordinates.

A hyperbolic embedding of a graph was proposed by Kleinberg (2007). It is proven that this em-
bedding is greedy given that it is constructed with a specific spanning tree. The presented routing
mechanism employs hyperbolic distances, based on the geodesic that connects two points in the
Poincaré disk model. The system fixes coordinates upon the spanning tree in a systematic manner.
A prerequisite for having a greedy embedding is that the graph has to be three-connected, which
is a requirement for being able to build a minimal binary tree used to guide the coordinate assign-
ment. The author also proposes a procedure for distributed coordinate assignment. Section 4.2.2
will further investigate this routing mechanism.

Later Eppstein & Goodrich (2008) have proven that the coordinates assigned by Kleinberg (2007)
requires Ω(|V | log |V |) bits for a graphG = (V,E). Therefore the space required is of the same order
as the storage requirements of BGP routing tables. They postulate that a graph embedding should
use succinct coordinates: coordinates that have a number of bits that is poly-logarithmic in |V |.
Such a succinct coordinate assignment method is proposed which makes use of a transformation of
the spanning tree to an autocratic weight-balanced tree. Using this transformed tree, they are able
to form a binary tree of depth O(log |V |). Hereafter an auxiliary space, the dyadic tree metric space,
is used. In this space, with its corresponding distance metric, a greedy embedding is obtained.
Finally this dyadic tree is embedded in a hyperbolic space, conserving its succinctness and greedy
properties.

Korman et al. (2002) show that labels can be used to identify nodes in a tree. The authors describe
protocols to assign labels to different types of trees: static, semi-dynamic and dynamic trees. A
static tree is one where the tree structure remains intact. Semi-dynamic means that vertices may
be added as leafs of the tree. The dynamic protocol allows leaf nodes to be removed on top of being
added. The authors thus incorporate network dynamics in their assignment scheme. The message
and storage complexity is analysed in each case. The tree construction itself is not specified, it is
assumed to already be present. Neither does the protocol take into account the deletion of non-leaf
nodes or the deletion of edges. This work does not address the use of labelled trees for geometric
routing. It does however establishes a theoretical framework for the labelling process itself. The
use of labels for geometric routing purposes was first seen in Routing with Position Trees (RTP)
by Chávez et al. (2007). Herein every node is assigned a label as described by Korman et al. (2002)
while the distance between two nodes is the shortest path length along the underlying spanning
tree.

2.3 AS-level Internet

The performance of the various routing algorithm may depend on the network type and the traffic
model used. As such it is of importance to investigate how the Internet backbone can be modelled

CHAPTER 2. BACKGROUND 20

realistically for simulation purposes.

2.3.1 Topology

Ad-hoc wireless networks and WSNs are typically modelled as UDGs.18 Hence this serves as a
basis for most of the work regarding geometric routing. UDGs can be naturally embedded in a
two-dimensional Euclidean plane E2. However, this is not necessarily the case for the AS-level
Internet. Faloutsos et al. (1999) collected data that accurately describes its topology by querying
the BGP routing tables. What was observed can be formulated into three so-called power-laws.

The first power-law states that the degree dG(u) of a vertex u is proportional to its rank (assume
that the vertices of a graph have been sorted in decreasing order of degree) ru to the power of a
constant R:

dG(u) ∝ rRu (2.4)

This power-law captures the equilibrium point of the trade-off between the costs and gains of
adding new edges to already existing nodes. The second power-law states that the frequency fd of
a node degree d is proportional to this degree raised to the power of a constant O:

fd ∝ dO (2.5)

This degree exponent O expresses the existence of a high number of low-degree nodes and a low
number of high-degree nodes. Various Internet datasets have the same degree exponent O which
is approximately −2.2. The third power-law states that the eigenvalues of the network19 λi are
proportional to its number of vertices |V | raised to the power of a constant ε:

λ ∝ |V |ε (2.6)

A graph’s eigenvalues are useful as they are related to other topological properties such as the
number of possible spanning trees or the diameter.20 Therefore it may be used to classify graphs.

These observations lead to the fact that the Internet AS-network can be modelled as a scale-
free network. Such a network follows a statistical degree distribution (defined in Definition 2.11)
P (d) ∝ d−γ with d the vertex degree and γ ≈ 2.22 as d→ +∞. This is shown in Figure 2.7.

Definition 2.11. Let n(d) be the number of nodes of degree d. The node degree distribution is

P (d) = n(d)
|V |

, it is the probability that a randomly selected vertex of a graph G = (V,E) is of degree
d.

Though a network’s degree distribution is an important property as it contains information of its
global characteristics and can be used to classify different networks21, it alone does not capture
the fundamental hierarchical structure of the Internet backbone. Briefly said, there are three

18Bouabene et al. (2012)
19These are the eigenvalues of the graph’s adjacency matrix.
20Cvetković et al. (1982)
21Zhou & Mondragón (2004b)

CHAPTER 2. BACKGROUND 21

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1 10 100 1000

P
(d

)

d

(a) Log-log scale

 0

 10

 20

 30

 40

 50

 5 10 15 20 25 30 35 40 45 50

P
(d

)

d

(b) Linear-linear scale

Figure 2.7: Scale-free network degree distribution P (d) = αd−γ ; α = 3000 and γ = 2.22

main properties in the Internet backbone: (i) its degree distribution P (d); (ii) the maximum node
degree; (iii) its rich-club connectivity (RCC) φ(r).22 This RCC can be defined by the following
definition.23

Definition 2.12. Nodes of graph G = (V,E) are sorted by decreasing number of links that each
node contains. There are instances where groups of nodes contain identical number of links. Where
this occurs, they are arbitrarily assigned a position within that group. The node rank r denotes
the position of a node in this ordered list. Furthermore r is normalised by |V |. The rich-club
consists of those nodes with a rank less than rmax, which can be arbitrarily defined. The rich-club
connectivity (RCC) is defined as the ratio of the total number of links to the maximum possible
number of links between members of the rich-club. The maximum possible number of links between
n nodes is n(n− 1)/2.

This means that the RCC measures the similarity between the rich-club and a clique consisting of
the same nodes.24 Figure 2.8 illustrates this phenomenon.25 Having a high RCC means that the
highest-degree nodes have many links between them, they form a dense core of the network.

Figure 2.8: Rich-club phenomenon: high-degree nodes are likely to be interconnected.

For obtaining a realistic AS-level connectivity representation, there are two notable datasets: the
BGP AS graphs, based on the Internet inter-domain BGP routing tables26 and the Traceroute AS

22Subramanian et al. (2002)
23Zhou & Mondragón (2004a)
24Cliques are complete sub-graphs of the network.
25Mahadevan et al. (2006)
26Hyun et al. (2003)

CHAPTER 2. BACKGROUND 22

graph, constructed by converting IP traceroute paths. Not all scale-free networks express all prop-
erties found in real AS graphs. Most notable is the previously mentioned rich-club phenomenon
in which a small number of vertices, called rich nodes, have a high degree. Rich nodes are pref-
erentially attached to other rich nodes, forming a tight core. Many other nodes are connected
directly to this core which enables the core to act as a traffic hub for the network. A widely used
model for generating scale-free networks is the Barabási-Albert (BA) model27. Herein a network is
grown with a power-law degree, employing a preferential-growth mechanism. A small random seed
network is expanded by iteratively attaching nodes to nodes already present in the graph with a
probability of

P (u) = dG(u)∑
v∈V dG(v) (2.7)

for the attachment of a new node to node u. A shortcoming indicated by the authors is the lack of
a high RCC. Therefore more accurate —though more complex— models have been developed such
as the Generalized Linear Preference (GLP) model28 which also tries to capture the addition of
new connections between already existing nodes of the network. Furthermore the GLP model uses
a more sophisticated probability distribution for node attachment. Later the Interactive Growth
(IG) model29 has been developed in which the selection of host nodes, nodes to which new nodes
are attached, is once again based on Eq. (2.7).

Hereafter Zhou & Mondragón (2004b) made some slight adjustments to the IG model to better
approximate the AS-level topology, based on observations of Chang et al. (2004). The authors
formulated a relationship between the degree of a node and its chance of acquiring a new link
when adding a new node. This was used as a base for a new graph generation model based on
nonlinear preferential attachment:

P (u) = dG(u)1+ψ log dG(u)∑
v∈V dG(v)1+log dG(v) (2.8)

with ψ = 0.048, obtained by numerical simulations. This equation approximates the original BA
equation, Eq. (2.7), for low-degree vertices. The attachment preference increases non-linearly as
the degree goes up, according to the most recent observations. This equation is the foundation
of the Positive-Feedback Preference (PFP) model, an extension of the IG model. The algorithm
generates links between both newly generated nodes and nodes already present in the network.
The authors report parameter values for PFP that accurately model the AS-level topology.

Siganos et al. (2006) made other striking observations regarding the Internet backbone topology.
Approximately 35% to 45% of the nodes are one-degree nodes and these nodes are both connected
to high- and low-degree vertices. Trying to capture this property, the authors observed a linear
relationship between the number of one-degree nodes of a neighbouring node and the complemen-
tary cumulative distribution function (CCDF), denoted as Or. This relationship forms the basis
for a fourth power-law as subsequently defined.

27Barabási & Albert (1999)
28Bu & Towsley (2002)
29Zhou & Mondragón (2003)

CHAPTER 2. BACKGROUND 23

Definition 2.13. Given a graph G = (V,E), the CCDF, denoted as Or, of the one-degree neigh-
bours of a vertex v ∈ V , is proportional to the number of one-degree neighbours, denoted as r,
raised to the power of a constant θ:

Or ∝ rθ (2.9)

Putting this observation to work, a new model was proposed, named the Jellyfish model. This
model captures the scale-free nature of the AS-level topology and its hierarchical structure, while
still adhering to the high frequency of one-degree nodes. Furthermore, the authors evaluated their
model over a large period of time and observed that its structure remains valid over multiple years.
It thus remains accurate although the Internet increases in size.

An important link between geometric routing and scale-free networks is given by Papadopoulos
et al. (2010). They postulate that there exist hidden metric spaces in scale-free networks. These
hidden metric spaces result in two nodes being likely connected when their distance in this space
is low. The authors conclude that a hidden metric space for scale-free networks is the hyperbolic
plane. This leads to efficient greedy routing when using an embedding into H2.

2.3.2 Traffic models

In this section the traffic flows of the Internet backbone is investigated. Obtaining a realistic model
is difficult as traffic data is rather scarce.30 A way to represent network traffic is the use of a matrix
(ei,j) ∈ R|V |×|V | with i, j ∈ {1, 2, . . . , |V |} and all elements ei,i = 0. Its rows and columns represent
the source and destination nodes, while its elements represent traffic between them. Mikians et al.
(2012) analysed AS-level data and formed an Interdomain Traffic Matrix (ITM). For this they
utilised the GÉANT network, a European academic network.31 Though it is not representative for
the entire Internet backbone, it may provide useful insights. The authors’ research focuses on the
spatial aspects of the traffic generated rather than its temporal evolution.

Some interesting points can be deduced. First of all, the matrix is sparse. This indicates that over
a period of time a large part of the nodes are never routing destinations. Traffic flows mostly to
popular networks. In a week’s time about 45% of all the ITM elements are zero.32 A remarkable
result was that 15% of the destinations were responsible for over 95% of the total traffic. Secondly,
the traffic has a heavy-tailed distribution.33 More specifically, the distribution resides somewhere
between a Pareto and a log-normal distribution (see the following definitions).

Definition 2.14. A Pareto distribution has a distribution probability of the form

P (x) =
(x
σ

)−α
, x > σ (2.10)

with the scale parameter σ and α in R+.
30Mikians et al. (2012)
31GÉANT is a European wide network that resides in the Internet backbone. It spans 34 countries and has an

overall throughput of approximately 50 Gb/s. Its customers are however mainly research institutes, leading to an
academic bias. Half of its traffic is directed towards commercial networks.

32Mikians et al. (2012) observed this by collecting data from the Universitat Politècnica de Catalunya,
BarcelonaTech access link, as all traffic originating from UPC is required to pass this link no traffic goes unno-
ticed. The claim is consistent with results reported by Gadkari et al. (2011).

33This is backed-up by the findings of Downey (2001) which state that Internet HTTP and FTP burst-sizes and
lengths are heavy-tailed. Cha et al. (2007) report similar results for the distribution of YouTube video traffic.

CHAPTER 2. BACKGROUND 24

Definition 2.15. A log-normal distribution is a continuous probability distribution that has a
normal distribution for its logarithm. Its density function can be formulated as

P (x) = 1
xσ
√

2π
e−

(ln x−µ)2

2σ2 , x > 0 (2.11)

with µ ∈ R and σ2 > 0.

In both distributions parameter values were sought to give a realistic shape. The authors report
values for α between 0.37 and 1.20 and a σ2-value varying between 0.13 and 0.38.

2.4 Load balancing

In this section literature regarding the application of traffic load balancing strategies to geometric
routing will be investigated. Generally, load balancing strategies can be categorized into two types:
passive and active load balancing. Passive load balancing strategies attempt to spread traffic out
over multiple nodes or links without the use of any live load information. On the other hand, active
load balancing strategies do make use of traffic load snapshots. This load information is then used
to actively steer traffic in such a way that hotspots are avoided. Because of this active traffic
steering, it may dynamically respond to changes in the traffic matrix. Load balancing strategies
may also be classified based on whether they try to balance load for network nodes or network
links. These different emphasises lead to different results, as will be shown later on in the thesis.

2.4.1 Mechanisms

Because many geometric routing mechanisms target WSNs, many load balancing techniques try
to lower the number of overloaded nodes in order to increase battery lifetime. Most node load
balancing selection procedures therefore try to avoid nodes with low battery levels. Also the
wireless nature of WSNs does not allow link load balancing. As a result, many studies focus on
node load balancing rather than link load balancing.

One of the earlier geometric routing systems incorporating load balancing is Geographic and En-
ergy Aware Routing (GEAR)34. This mechanism uses a next-hop selection heuristic based on
neighbouring node battery levels to guide traffic towards the nodes with highest battery levels.
Significantly longer lifetimes have been reported over GPSR. As node energy depletion correlates
with the traffic it has to process, this also entails node load balancing. It has to be noted that
GEAR is exclusively designed for UDGs. A second drawback is the requirement for every node to
store a learned cost to every target region. This learned cost is a combination of the energy levels of
the nodes traversed when routing towards this region, and the path length. As every node requires
O(|V |) entries in its table, scalability problems may arise as the network size increases. Another
load balancing mechanism based on node energy consumption is proposed by Zeng et al. (2009).
Herein the selection criterion for choosing the next hop is based on a cost function. This function
is a combination of the distance to the destination and the node energy level. Neighbours are thus
not only selected according to their position in the plane, but also according to their battery level.

34Yu et al. (2001)

CHAPTER 2. BACKGROUND 25

Carlsson & Eager (2007) propose a non-Euclidean geometric load balanced routing system called
Load Balanced Local Shortest Path (LBLSP). The mechanism combines greedy routing with two
additional metrics called Local Shortest Path (LSP) and Weighted Distance Gain (WDG). The
former has the property of being loop-free with a low chance of reaching a void while the latter
provides load balancing, however it is not guaranteed to be loop-free. LSP makes use of the concept
of line-of-sight in radio networks, making it unusable in wired networks. The same holds true for
WDG, where an estimated distance to an obstacle —based on the line-of-sight— is used. Virtual
obstacles are introduced at the position of traffic hotspot to force traffic deflection. The authors
report that the natural detection of the exact size and shape of these virtual objects to attain load
balancing is still an open problem.

Li et al. (2010) have proposed a novel geometric routing mechanism called Circular Sail Routing
(CSL). Passive load balancing is achieved by mapping a two-dimensional coordinate space onto
a sphere by means of a stereographic projection. Forwarding decisions are made by employing a
geodesic distance on this sphere. As the authors have shown, in a two-dimensional network grid,
traffic is concentrated in the centre when using an embedding into E2.35 When routing on a sphere
this is not the case as no centre exists. As shown by the results, the centre traffic hotspot of the
network is indeed avoided by CSL. The downside however is that it is solely designed and tested
for grid networks with a size of approximately 400 nodes.

A similar routing mechanism is Curveball Routing36. The authors first developed a theoretical
network load model for UDGs. This is consolidated into an equation that describes the average
node load in function of its distance to the centre of the network. They term the traffic hotspot
formed under a uniform traffic matrix between random source-destination pairs at the centre of
the network as the crowded centre effect. The authors then form a bridge between optimal routing
paths in terms of load balancing, and curved paths that light follows when traversing a medium with
a varying refraction index. Theoretical computation of the minimum load paths seems infeasible as
excessive computation overhead is required, or large pre-calculated tables are necessary. This leads
to Curveball Routing, a heuristic that approximates this theoretical path construction. Curveball
Routing projects the plane E2 onto a sphere, much like CSL, to diminish the crowded centre
effect. The newly obtained coordinates on the sphere are used for greedy routing. The coordinates
in E2 are still used as a fallback method in case voids are encountered. An undesired effect of
mapping coordinates onto a sphere is however that the top of the sphere is more crowded due to
the projection properties. Also the sphere lacks completely coverage: there is an upper cap with
no points mapped to it. The load balancing behaviour was measured by monitoring the maximum
load handled by a node. The authors report slightly positive results in terms of load balancing
both on their synthetic and real test bed.

Once more driven by the balancing of energy consumption in WSNs, Zhang et al. (2005) proposed a
Trajectory-Based Forwarding technique that forms the basis for their Curve-Based Greedy Routing
Algorithm. By using B-splines to construct multiple curved paths from source to destination, traffic
can be balanced amongst them. The source node selects a fitting B-spline curve and encodes this

35This has been formally proven by Popa et al. (2007).
36Popa et al. (2007)

CHAPTER 2. BACKGROUND 26

in the packet headers. This information is hereafter decoded at every node to make forwarding
decisions. Each node selects its neighbour with the lowest distance to the curve as a next node
(which is also closer to the destination). Nodes along the trajectory will send feedback about the
node congestion to the previous ones. These can then select a different next hop if needed to avoid
node traffic overload. Here the distance to the B-spline is used as a cost function. If routing fails,
a feedback message is sent to the source in order to generate a new spline. The algorithm achieves
active load balancing but is only tested for 200 nodes, and is based on UDGs. Also the node
storage requirements for the splines are not investigated.

In the family of systems based on structured embeddings, Tang et al. (2010) have proposed the use
of more than one spanning tree simultaneously, to generate multiple embeddings.37 Root nodes
for the various trees are chosen randomly. Every tree in use leads to a different set of coordinates
for each node. In their work the packet overhead, the node load and the average stretch are all
evaluated for a varying number of trees. A limitation however is that their mechanism is solely
focussed on WSNs, and is thus tested only on UDGs. The tests are also limited to around 1000
nodes, so the algorithm’s scalability is not extensively examined. As they target wireless networks,
the investigation of link load distribution is missing, which plays an important role in the Internet
backbone. Their greedy routing mechanism in which a neighbouring node is selected based on its
minimal distance over all of the embeddings, results in a passive form of load balancing.

Newsome & Song (2003) propose a passive load balancing scheme for their Virtual Polar Coordi-
nate Space (VPCS)-based routing system. Their tree-based algorithm tries to avoid the natural
bottleneck around the root of the underlying tree. Especially when shortcuts within the tree are
unavailable, traffic has to be routed over the spanning tree itself. By employing smart routing the
algorithm makes use of links that would be left out when using a default greedy routing scheme.
Their final scheme is named VPCR and is described in Section 2.2.3 as well as Section 4.2.1. A
downside is that the polar ranges have to be ordered in a plane E2. This comes down to forming
rings of nodes at each level of the tree. If these rings are ordered correctly, routing along them will
bring a packet closer to its destination. It is hard to see how this can be implemented effectively
outside the scope of UDGs. By taking paths that are less likely to traverse the root node, the
researchers report better passive load balancing behaviour.

2.4.2 Metrics

To be able to objectively measure the load balancing properties of a routing mechanism, load
balancing metrics have to be defined. Metrics found in literature were originally designed to be
used for measuring node load balancing, but they can be naturally extended to link load balancing.
A metric found in literature is a β-ratio38. This ratio calculates the traffic distribution over each
node or link as

37This system makes use of the theoretical framework established by Korman et al. (2002) as its foundation.
38Velayos et al. (2004)

CHAPTER 2. BACKGROUND 27

β =

(∑
x∈X

fx

)2

|X|
∑
x∈X

f2
x

(2.12)

with X the set of nodes V or links E of the network G = (V,E) and fx the number of paths
going through node or link x. The β-ratio goes from 1

|X| ≈ 0 (unbalanced) to 1 (balanced). An
advantage of the β-ratio is that has a standard range [0, 1] which is easily understandable. Another
load balancing metric is proposed by Li & Xiao (2010). This metric takes into account the variance
of the number of packets passing a certain node or link x:

φ =

∑
x∈X

(
Lx − L̂

)2

|X|
(2.13)

with Lx the number of packets passing through node or link x and

L̂ =

∑
x∈X

Lx

|X|
(2.14)

the average number of packets passing through the nodes or links of the network and X the set of
nodes V or links E. These metric do not take into account the potentially increased stretch caused
by the load balancing effect. This effect cannot be neglected as it is very plausible that high load
balancing values will induce more total traffic.

A trade-off between network stretch and load balancing is studied by Gao & Zhang (2004) and
Gao & Zhang (2009). These studies focus on UDGs and take into account the node density when
embedding the network in the plane E2. A theoretical framework is constructed, however only
unrealistic worst-case traffic scenarios and node layouts are evaluated.39 Articles such as Li et al.
(2010) measure the effects of load balancing by observing the average and maximum load (over all
network nodes), along with the standard deviation. Carlsson & Eager (2007) particularly measure
the average maximum number of packets processed by a node, which is essentially the average
maximum load. Popa et al. (2007) measure the average and maximum load. Zhang et al. (2005)
measure the load by the observing the average node energy usage. If the energy usage can be
linked to a node’s load, this should correspond to the average load. Bruck et al. (2005) measure
the load balancing behaviour of their mechanism by means of the normalized standard deviation,
which is the standard deviation divided by the average.

In this thesis the β-ratio will be used for measuring load balancing behaviour as it is easy to
interpret, along with a normalized standard deviation which will be called the λ-ratio. Both ratios
will be used to measure link and node load balancing behaviour of routing schemes.

39This is admitted by the researchers.

CHAPTER 2. BACKGROUND 28

2.5 Routing fault-tolerance

This section surveys literature regarding the fault-tolerance of geometric routing mechanisms. With
fault-tolerance, a routing system’s ability to cope with network dynamics, such as node or link
failures, is meant. This however has not yet been extensively studied.40 Cvetkovski & Crovella
(2009) are pioneers in exploring fault-tolerance applied to geometric routing. They propose a
generalization of geometric tree routing called Gravity-Pressure (GP) routing. Herein two modes
are operational: (i) gravity routing mode and (ii) gravity-pressure routing mode. The routing
algorithm operates by default in gravity mode, which is simply greedy routing. Whenever packets
get stuck in a void, gravity-pressure mode is activated for that packet. Now routers are no longer
restricted to following a distance-decreasing path for this packet. From the moment gravity mode
is activated, each packet will record the nodes it passes in its header, combined with the number of
times it passes them (the visitation number). When selecting a next hop this visitation number will
be taken into account by only considering those nodes with a minimal visitation number. From this
set, the node with the lowest distance to the destination will be selected. The authors have proven
that GP routing guarantees 100% routing delivery as long as the network is not disconnected. It
is capable of dealing with both node and link failures.

A solution to single and multiple link failures has been proposed by Sahhaf et al. (2013). Single link
failures are resolved by engaging in a breadth-first search to find an intermediate node on a path
towards the destination. If such a node is found, it is queried in order to obtain its coordinates.
The node at which packets got stuck will now route packets towards this intermediate node. A
second algorithm presented deals with multiple simultaneous link failures. Herein a path protection
algorithm is developed to account for link failures in hyperbolic routing as described by Kleinberg
(2007). Their mechanism avoids voids with limited overhead and has a comparable stretch to other
link protection methods. The link recovery time can be lowered by pre-calculating the alternative
paths for fast packet re-routing.

2.6 Conclusion

Little work in scientific literature investigates the application of geometric routing to wired networks
such as the Internet backbone. The main difference with wireless networks is that these wired
networks cannot be modelled as UDGs. It has been shown that Internet AS-level topologies
are scale-free by nature. Also the application of algorithms targeting wireless networks to wired
networks has rarely been examined.
The majority of the algorithms investigated are not tested on sufficiently large networks. Therefore
no guarantees can be made about their scalability. Also the use of multiple embeddings for routing
purposes leaves many open questions. Furthermore not much work deals with fault-tolerance
regarding geometric routing.
A general trend that can be witnessed regarding load balancing in geometric routing is that there
is little to no work on active load balancing behaviour in scale-free networks. Most work assumes
UDGs as an underlying topology. Link load balancing behaviour research could not be found which

40Sahhaf et al. (2013)

CHAPTER 2. BACKGROUND 29

may turn out to be fundamentally different from node load balancing. Once again the different
load balancing algorithms have not been tested on large networks. This means that load balancing
in scale-free topologies is currently an open research problem, especially in large networks with a
focus on scalability.
It can be concluded that load balancing applied to scale-free networks, in particular the Internet
AS-level network based on realistic traffic models, with a focus on scalability, link load balancing
and fault-tolerance as an alternative to BGP is still an open research problem.

Chapter 3

Routing simulator

An important part of the design, implementation and evaluation of different routing mechanisms
is the use a solid simulation. Therefore a routing simulator was required in which it was possible
to implement algorithms quickly while avoiding the complexity of real distributed behaviour. To
achieve this, a Java software framework was developed in which novel routing mechanisms could
easily be implemented, tested and visualised in a multi-threaded environment. This framework
was built on top of the open-source graph visualisation tool Gephi1.

3.1 General

First, a routing simulator was built using the open-source graph manipulation framework Java Uni-
versal Network/Graph Framework (JUNG). Afterwards it became clear that this graph framework
had only a small code-base regarding extra functions such as generating dynamic graph layouts
or graph data analysis. JUNG was also incapable of offloading graphics rendering to the graphics
processing unit (GPU). This is an important requirement as the computational power of the cen-
tral processing unit (CPU) is needed for executing the routing simulation environment itself. The
graph visualisation project Gephi had this ability. The downside was that Gephi, unlike JUNG,
is not a regular graph manipulation library. Gephi is a piece of standalone software capable of
rendering very large graphs by using OpenGL on the GPU. Therefore the Gephi program itself, of
which the source code was publicly available, had to be modified to be able to perform the same
routing simulations as the previous JUNG-based simulator.

First of all Gephi had to be partially reverse-engineered to be able to understand its different
classes and functions. Afterwards unwanted behaviour was changed and additional functionality
was added. For example the changing opacity of the links and nodes upon hovering-over by the
cursor was removed and the main graphical user interface (GUI) was thinned. The most important
modification was the addition/modification of the software interface by which other modules are
able to use Gephi to manipulate graphs. This allowed the migration of the code of the previous
simulator without any problems. The final result is the existence of two disjoint modules: Gephi
with its 2D graph rendering engine and manipulation techniques, and the routing simulator itself.

1Bastian et al. (2009)

30

CHAPTER 3. ROUTING SIMULATOR 31

3.2 Architecture

A simplified view on the software architecture of the routing simulator (including the Gephi module)
is shown in Figure 3.1. As can be witnessed, the total project can be subdivided into multiple
packages, consisting of classes which belong together either hierarchically or logically. First there is
the gephi package (depicted in blue) which consist of a graph structure Graph, capable of linking
together Node objects by means of Edge objects, and the Gephi visualisation engine. This rendering
engine will take care of anything related to the visual aspects of the graphs. For example, when
the colour field of an Edge object is changed, the rendering engine will be notified and repaints it.
This gephi package actually forms a standalone project which is interfaced with the actual routing
simulator, consisting of the other packages.

The gephi package interfaces on the one hand with the package visuals and on the other hand
with the package bridge. The package visuals consists of a RoutingPaneGUI which defines a
pane within the main Gephi GUI. From this pane, the routing simulator can be manipulated,
e.g. changing parameters, stopping the simulation, generating coordinates etc. Furthermore there
is the ChartGenerator which is responsible for drawing live plots based on parameters in the
RoutingPaneGUI. For example, it is capable of monitoring the current stretch or success ratio.
The second package interfacing with the gephi project is the bridge. As the name indicates,
this package consists of classes that form a bridge between the Gephi program and the routing
simulator. This is a very important module as it separates Gephi completely from the routing
simulator itself, thus enforcing code modularity.

The different classes will be explained by describing how a routing simulator instance can be
created. First, via the Gephi GUI, a graph structure is loaded into the program from an arbitrary
graph file (e.g. a GraphML file). This leads to the creation of a Graph object with a set of
edges (Edge) and vertices (Node). Next, the RouterEtcher is called. This class is responsible for
generating the same graph structure as before, consisting of objects of the type Vertex and of
the type Link in the routing simulator project (the non-blue packages). Afterwards, there exist
two graph structures: a graph in the Gephi project, which is used to store visual information
for graphics rendering purposes, and the graph structure in the routing simulator project, which
is used by the other classes to store general and visual information. This distinction exists to
completely separate the routing simulator from Gephi. The routing simulator graph edges and
vertices are stored in two hash maps mapping vertex and edge identifiers to objects.

Hereafter, the RouterEtcher will attach one RouterImpl object to each vertex. The RouterImpl

class is a specific subclass of the more general Router class. For example, one may create routers
of different types, e.g. GeoRouterA and GeoRouterB, which both inherit from Router. To keep
architecture modular, the RouterEtcher will not directly create RouterImpl objects, but rather
it will use a RouterFactory with a specific RouterFactoryImpl, based on the factory software
pattern. Finally, the RouterEtcher will create neighbour tables in each Router based on router
identifiers, by inspecting the vertex and link hash maps. Now the different routers know their
neighbours.

Next a CoordinateAssigner is created for a specific routing instance (e.g. GeoRoutingA) which will

CHAPTER 3. ROUTING SIMULATOR 32

be.ugent.gr.bridge

VertexObserver

Observable

be.ugent.gr.general

Vertex

Router

gephi

Graph

RenderingEngine

Node

TravelerObserver

Listener

Traveler

Traffic

RouterFactory

RouterEtcher

NetworkDynamics

be.ugent.gr.instance

TravelerImpl

Coordinates

RouterImpl

CoordinatesImpl

CoordinateAssigner

RouterFactoryImpl

be.ugent.gr.visuals

RoutingPaneGUI

ChartGenerator

be.ugent.gr.utils

Metrics

Util

TikzExporter

ShortestPathAnalyser

be.ugent.experiments
Main

Edge

Experiment

WorkQueue

Link

LinkObserver

Figure 3.1: Architecture of the routing simulator

CHAPTER 3. ROUTING SIMULATOR 33

assign CoordinatesImpl to all routers based on a graph embedding scheme. CoordinatesImpl

is a subclass of Coordinates which contains more specific information regarding a coordinate
structure: e.g. GeoCoordinatesA, which requires the storage of its own length.

When all coordinates are generated, the TravelerImpl is called. This TravelerImpl contains all
routing logic specific to a certain routing algorithm (e.g. GeoRoutingA). The more general logic,
such as stretch or success ratio calculation is done by its parent class Traveler. This TravelerImpl

is capable of generating routing paths based on the criteria specified in its logic. As such it simulates
routing behaviour. This is done by altering weights of edges and vertices as well as calculating
the stretch and success ratio. These weights are used to store link and node load information.
Whenever traffic is generated over a link or node, its weight is increased (see Section 3.3 for more
information). The specific style of augmenting this weight is done by the Traffic class, which is
capable of generating traffic of different types, such as uniform traffic or Pareto distributed traffic.
Furthermore the NetworkDynamics class can be used to generate link and node failures following
a certain probability distribution with a specific frequency.

Utility functions are all combined into a single utils package. Examples of such functions are
exporting the graph to Latex code with TikzExporter, analysing shortest path behaviour with
ShorestPathAnalyser or calculating load balancing metrics with Metrics. All classes in this pack-
age are public such that other classes may freely use them. On top of this, there is a Config class,
which is not depicted in Figure 3.1, containing all necessary configuration information regarding
the routing simulator (e.g. parameter values). Every class has access to this Config class.

Now the package bridge is explained. Classes outside of the Gephi project are capable of manip-
ulating Vertex or Link objects. For example, changing a vertex’ position on screen, increasing its
size, changing its colour etc. To be able to couple the manipulation of these objects to changes in
graphical rendering of their complementary Node and Edge objects, an observer pattern was im-
plemented. Now each object extending the Observable class will notify Observer classes. These
Observer classes all implement a Listener interface. Whenever something is changed in one of
the Observable objects (e.g. a field value has been altered), these observers will notify the correct
classes in the package visuals and gephi. As such, these classes are notified and change their
state. For example a certain RouterImpl is marked by a graph embedding algorithm. This will
cause the router’s corresponding Vertex object to change it colour. This object will notify the
VertexObserver which will notify the corresponding Node object inside Gephi. This Node object
will notify the RenderingEngine which will re-draw the node on screen (more information on the
bridge can be found in Section 3.5).

In Figure 3.2 the routing simulator architecture is slightly altered. Here the Traveler and
CoordinateAssigner are removed and four classes are added (which are depicted in red). Note
that this is not an actual altered version of the routing simulator, these classes (e.g. Traveler and
Simulator) coexist in one project and the distinction was simply made for clarity purposes. This
picture highlights a different way of simulating routing behaviour. First a Simulator instance
will be set up (instead of a Traveler). This Simulator will indefinitely (until stopped) call a
Router checking function. This Router function represents the receipt of a possibly incoming

CHAPTER 3. ROUTING SIMULATOR 34

be.ugent.gr.bridge

VertexObserver

Observable

be.ugent.gr.general

Vertex

Router

gephi

Graph

RenderingEngine

Node

TravelerObserver

Listener

Simulator

RouterFactory

RouterEtcher

NetworkDynamics

be.ugent.gr.instance

Coordinates

RouterImpl

CoordinatesImpl

RouterFactoryImpl

be.ugent.gr.visuals

RoutingPaneGUI

ChartGenerator

be.ugent.gr.utils

Metrics

Util

TikzExporter

ShortestPathAnalyser

be.ugent.experiments
Main

Edge

Experiment

WorkQueue

Link

LinkObserver

PacketImpl

Packet

CoordinateGenerator

Figure 3.2: Architecture of the routing simulator: altered

CHAPTER 3. ROUTING SIMULATOR 35

packet. Whenever a router receives a packet, it will execute its routing engine which results in
either dropping the packet or sending a new one to another router. As such, more realistic routing
behaviour is simulated.

The Simulator will run several threads in parallel which allow a random Router to execute its
routing logic. This Router may then execute the processing of one packet. Different types of
packets (Packet) exist, which are represented by PacketImpl. For example this can be an ac-
knowledgement packet, a coordinate update packet, an election packet etc. Each Router has an
incoming queue, in which packets can be placed. Sending a packet by a router is done by placing
a packet object of a certain type on the incoming queue of another router. As such, the behaviour
of a distributed set of routers is more accurately modelled. Furthermore a CoordinateGenerator

is used to keep track of the current status of the network. For example, to not be burdened with
the control of the termination of different algorithms, e.g. when all routers have elected a certain
node (see Section 4.1.1), this class will take care of the announcement of a final elected node. This
class is also responsible for sending initial messages into the network, or synchronising different
steps of a graph embedding algorithm.

Thus the main difference between using the Simulator and using the Traveler is that the
Traveler is more abstract as the routing logic is not directly added to the Router instances,
but resides in the Traveler itself. In case the Simulator is used, all routing logic is encapsu-
lated in a Router instance, which will receive packets, execute different routing functions based on
the contents of those packets and send out new messages to other routers. On the other hand, by
allowing the Traveler to abstract the notion of packets, the implementation of different novel algo-
rithms can be speeded up greatly. Because of the increased complexity of the Simulator, it is only
used in certain algorithms for generating control information (e.g. the assignment of coordinates
in SALT, see Chapter 4), and not for routing purposes. However, if required, new PacketImpl

classes can easily be created and RouterImpl classes can be extended with new routing logic to
collaborate with the Simulator.

3.3 Routing behaviour

The experiments used to evaluate routing behaviour are largely based on the generation of simu-
lated traffic between different source-destination pairs simultaneously in a multi-threaded environ-
ment. Most traffic is generated following a Pareto distribution.2 This means that traffic bandwidth
usage f(x) is based on the equation

f(x) =
(xm
x

)α
(3.1)

with xm = 0.1 and α = 0.8; x was taken randomly from the interval [0.1, 5]. The function f

represents the traffic bandwidth usage for all links along the constructed path between source and
destination. If such traffic is generated for a path P = 〈s, n1, n2, . . . , nm, d〉, then for every link
e ∈ P , thus e ∈ {(s, n1), (n1, n2), . . . , (nm, d)}, its used bandwidth is augmented by f(x). The
simulation environment maps all links e ∈ E to a link bandwidth weight we and all nodes to a
node bandwidth weight wv. This is done by storing this weight inside the corresponding Edge and

2as studied in Section 2.3

CHAPTER 3. ROUTING SIMULATOR 36

Vertex objects. For example, when a link e is assigned traffic f(x) and its current traffic weight
is set to we, its new weight will be set to we + f(x). The initial weight is set to 0 for every link:
we = 0 ∀e ∈ E. Load balancing metrics β and λ (see Section 2.4.2) can then be calculated based
on the weight of every graph edge or vertex. Therefore the β-ratio is calculated as

βX =

(∑
x∈X

wx

)2

|X|
∑
x∈X

w2
x

(3.2)

with wx the weight of the edge x or the vertex x depending on whether X represents E or V for
a graph G = (V,E). The λ-ratio is calculated as

λX = σw
w̄x

(3.3)

which is the standard deviation of the weights σw, divided by the average weight w̄x. These
calculations are all executed by the utility class Metrics.

The Traveler will set-up different data structures to initiate the routing simulation, e.g. generating
a list which can contain a stretch distribution. This Traveler will then call the used TravelerImpl

which will execute a simulation loop until it is forced to terminate, e.g. by a stop action from the
RoutingPaneGUI. In each simulation loop a source and destination Router are generated by a
certain generation function (e.g. random generation). Inside the simulation loop, another loop is
executed which contains the routing logic. At every step there exists a current router, which is
the current hop, for which a next router is generated that acts as the next hop. At the end of each
iteration, next becomes current for the next round. This process continues until either the desti-
nation is reached or a void is encountered. In order to achieve some sort of concurrent behaviour,
the Traveler will execute n loop threads by which multiple routing paths are generated simul-
taneously. On the other hand, when looking at the Simulator class (the Traveler counterpart
which models routing behaviour more accurately) we see it is only used for control information,
no actual routing behaviour is implemented. However, each Router can easily be extended to be
able to model more realistic routing behaviour. Of course then a specific PacketImpl class should
be created to store traffic information, e.g. a weight field.

3.4 Running experiments

As can be seen in Figure 3.1, there exists a package experiments. This package resides outside of
the actual routing simulator environment. It is able to initiate routing simulation by calling the
correct interface functions. The Main class calls a certain Experiment class, which is a specific
experiment with a certain set of parameters (see Chapter 6). This Experiment class makes sure
that the bridge decouples the routing simulator from Gephi. This is required to run the routing
simulator on the high-performance computer (HPC), which does not support graphics rendering.
This truly highlights the importance of the bridge structure and the modularity of the software
architecture. The bridge makes it easy to split off Gephi from the simulator without having to

CHAPTER 3. ROUTING SIMULATOR 37

change the actual code.

The Experiment classes are capable of running different parallel threads to exploit the different
CPU cores of a HPC node. The number of parallel instance launched simultaneously is controlled
by a maximum thread counter. Because different cores may execute different sub-experiments
(e.g. a different parameter value for the same experiment) at different speeds, a WorkQueue class is
needed. This class makes sure that each HPC core is constantly working. It essentially generates
a thread pool which is running on the HPC. For example when core #25 of the 32 cores is done
executing a sub-experiment, this thread pool will notice that only 31 threads are currently running,
and immediately schedule a new sub-experiment with the next parameter value. As such no HPC
execution time is wasted.

Because threads can only be split over multiple cores of the same node, a distributed execution en-
vironment was added to the routing simulator based on the open-source grid framework Hazelcast.
Hazelcast is an in-memory data grid management framework that allows the distribution of data
structures (e.g. maps or lists) across different cluster nodes.3 It enforces memory consistency over
the cluster and automatic redundancy to protect against node failures. By doing this it is possible
to spread the graph structure (the hash maps of vertices and links) over multiple cluster nodes.
As such multiple nodes can run different Traveler instances in parallel. The downside however
is that this requires communication between different cluster nodes, which greatly slows down the
simulation behaviour. It is clear that executing software on multiple nodes is only beneficial when
there is not much communication between different threads. However, in the routing simulator
built here this is not the case as every node executing the generation of a routing path has to
be aware of the state of the whole network. For example, load balancing traffic has to be based
on the correct node or link weights. As such the different cluster nodes are constantly communi-
cating, which slows the simulator down to the point where it is nearly unusable. Therefore, the
experiments are always ran on a single cluster node with a large set of cores.

The output of the different experiments is written dynamically to data files in order to generate
data even when a simulation experiment should fail. This output mostly contains parameter-metric
value couples for a wide range of parameters, for example the different load balancing metrics for a
changing number of embeddings k in Forest Routing (see Chapter 6). The properties and contents
of the data output files can be adjusted in each Experiment class. This Experiment class is
also responsible for calculating several derived attributes such as the average value, the standard
deviation, boxplot values etc.

3.5 Modularity and extensibility

The software architecture has been built with modularity and extensibility in mind. Modularity is
present in the way the Gephi project itself is separated from the routing simulator. This is done by
the bridge structure which implements the observer pattern. Because of this bridge it is possible
to decouple the routing simulator module from Gephi such that it is possible to run simulations

3http://www.hazelcast.com/

http://www.hazelcast.com/

CHAPTER 3. ROUTING SIMULATOR 38

on a computer without graphics support (e.g. the HPC). Furthermore, the source code has been
divided into multiple hierarchically and logically structure packages, consisting of classes in which
general logic is separated from specific logic through the use of inheritance. All different simulation
functions are divided in distinct classes which incorporate code that logically belongs together.

The framework is extensible as new routing behaviour can be easily introduced by creating the
required subclasses of the classes in the general package. For example it is possible to create a
second package be.ugent.gr.instance2 which has its own TravelerImpl with specific routing
logic, a RouterImpl for holding the necessary routing information, a specific way of generating
coordinates by the CoordinateAssigner etc. This also holds for the Simulator class and its
corresponding CoordinateGenerator and PacketImpl subclasses.

Additional routing experiments can be set-up in the main package by adding new Experiment

classes. These classes hold all necessary simulation and parameter information and ensure that
the output data, as well as derived experimental data, is correctly generated into data files, as
explained in the previous section.

The code-base itself is available on the Ghent University Github which enforces automatic ver-
sioning. As such new project members are able to pull existing code, modify it and push it to
the Git project repositories. Git allows for roll-back actions, branching strategies, code altering
restrictions and policies which are needed to avoid source code pollution. It is possible to fork the
existing project to create a slightly altered parallel project.

3.6 Challenges

Creating this routing simulator was not trivial. Several challenges appeared throughout the course
of its design. One challenge was enforcing correct distributed behaviour, to support the Traveler

class in its use of multiple threads. This required the use of Java monitors and locks to synchronise
function calls in a multi-threaded environment. If left out, for example the weights of the different
vertices and links would not be updated correctly, thus corrupting the routing simulation data.
This also required the implementation of more advanced data structures, such as concurrent hash
maps or lists.

Another big challenge was the implementation of Hazelcast for executing the routing simulator
on the HPC on different nodes simultaneously. This required some conversions of the used data
structures. For example the hash maps had to be altered to their Hazelcast counterparts such
that Hazelcast was capable of automatically spreading their contents out over multiple nodes
and enforcing consistency. As these advanced data structures behave slightly different than their
standard version, some parts of the source code had to be refactored. However, due to the code
modularity these refactoring actions could be contained.

Also the set-up and modification of Gephi such that it would be capable of interfacing with the
routing simulator was challenging. The Gephi source code had to be extensively reengineered to
alter important functionality. Only after quite some tinkering was it possible to fully integrate the
original routing simulation code (based on JUNG) as an add-on in Gephi.

Chapter 4

Preliminary research

This chapter outlines the research that preceded the development of the Forest Routing (FR)
mechanism that will be explained in Chapter 5. The goal of this thesis is to develop a geometric
routing strategy that achieves traffic load balancing in combination with a low stretch. In order
to fulfil this goal, a fitting a baseline routing strategy has to be identified first. Geometric routing
mechanisms were originally designed for wireless ad-hoc networks, with fixed radio transmission
ranges. Therefore literature regarding geometric routing generally targets UDG-type networks.
Hence geometric routing will be investigated by examining its application to UDGs first. Later
on its application to scale-free networks will be evaluated, as these networks model the Internet
backbone more accurately. By doing so, the possibility of embedding scale-free networks into a two-
dimensional Euclidean plane is examined, which is supported by the work of Wang et al. (2012).
Herein the viability of their routing mechanism is highlighted by testing it both on synthetically
generated scale-free networks and real Internet topology datasets.

To recapitulate, when physical geographic coordinates are unavailable, or do not have any mean-
ing1, virtual coordinates are needed. The assignment of coordinates in a mathematical space to
vertices of a graph is called a graph embedding. When examining embedding construction proce-
dures, it is clear that these can be categorized into two classes:

1. iterative embeddings: the graph embedding is constructed by assigning initial seed coordinates
which are then updated iteratively, guided by an objective function. For example, assigning
random coordinates to all network nodes after which they are updated iteratively by trying
to minimize the difference in distance in the embedding space and the shortest path length
between all node pairs.

2. structured embeddings: to construct these embeddings, a fixed structure is used to guide the
embedding procedure. Most structures are spanning trees of the underlying network. For
example the embedding of Kleinberg (2007) uses a spanning tree, in which the position of
every node in the tree determines the coordinates it receives, combined with a hyperbolic
tiling.

1e.g. routers in the same datacenter will have approximately the same geographic coordinates.

39

CHAPTER 4. PRELIMINARY RESEARCH 40

Because research regarding geometric routing based on iterative embeddings is more elaborated
than research of geometric routing based on structured embeddings, routing mechanisms based on
the former type are examined first. Ultimately it will become clear that this first type of system
is not flexible enough to be applied to varying network topologies. Therefore the choice to design
a structured embedding-based mechanism as the main routing algorithm of this thesis will be
substantiated by experimental results.

4.1 Simulated Annealing Label Trees

A geometric routing system, with an iterative embedding strategy, was designed based on PSVC2,
GSpring3 and NoGeo4. This system embeds the network at hand into the two-dimensional Eu-
clidean plane, denoted as E2. Before commencing the embedding procedure, a set of anchor nodes
are elected. Each anchor node has an approximately equal distance to every other anchor in terms
of shortest path length. Afterwards, the anchor nodes are assigned coordinates in R2. Later on,
non-anchor nodes use the anchors as reference points to calculate their own coordinates. Finally
a relaxation algorithm is applied to iteratively make the faces of the network more convex in the
embedded space. This last step aims at reducing the overlap of coordinates of different nodes and
increases the greedy routing success rate.
Because packet delivery is of utmost importance in heavy-traffic networks such as the AS-level
Internet, a fallback method is constructed to guarantee a 100% delivery rate, even when voids are
encountered. This fallback procedure makes use of a greedy structured embedding based algorithm
called RTP5. The combination of the main mechanism and its backup procedure is named Simulated
Annealing Label Trees (SALT).

4.1.1 Election procedures

First off, some formalism regarding election procedures as they are used in this work is in order.
In an election procedure the participating nodes —in this case all nodes of the network— elect
a single common node. For a graph G = (V,E), the election procedure consists of a set of |V |
election processes

{
p0, p1, . . . , p(|V |−1)

}
which

• have no shared variables

• are only able to communicate via message passing

In our case, each process pi is mapped to a node v ∈ V , therefore we will speak of nodes rather
than processes. All network nodes select the exact same unique node v ∈ V . In case the election
procedure should fail6, a new election round should be initiated. Because every process has to
elect the exact same node, it should be possible to identify them uniquely. The identifier of a
node v ∈ V is called a key K(v) and is taken from a key set K. An example of such a key set
is the union of all possible Media Access Control (MAC) addresses, which are very suited due to

2Zhou et al. (2010)
3Leong et al. (2007)
4Rao et al. (2003)
5Chávez et al. (2007)
6For example, this can happen when one of the election processes crashes.

CHAPTER 4. PRELIMINARY RESEARCH 41

their deterministic uniqueness. Every node taking part in the election procedure has two essential
variables:

• E ∈ K: indicates the key of the current election candidate. In case the current node v has
not elected any candidate yet, this variable is assigned the key K(v) of the node itself.

• P ∈ {false, true}: indicates whether the node is engaged in the election procedure or not.

Each node also stores a set of attributes, denoted as A. This may for example be the degree of the
current election candidate. The election ends only when every node possesses the same E-value.
The election procedure is entirely based on message passing. Each message contains an Er-value
along with an attribute set Ar =

{
A(0)
r ,A(1)

r , . . . ,A(n)
r

}
. Upon receiving an election message, a

node will decide whether or not to update E and A. Doing this requires the receiving node to check
the attributes in order of increasing i-value. As long as A(i)

r = A(i), the node keeps on checking
additional attributes. Once an attribute A(i+1)

r 6= A(i+1) is encountered, the node will choose to
update the current candidate E and the corresponding attributes A (when A(i+1)

r > A(i+1)) or
discard the message (when A(i+1)

r < A(i+1)). A restriction is enforced such that at least one of
the attributes in the decision mechanism is K to make sure all nodes eventually elect the same
candidate. The node key thus acts as a tie breaker for the other attributes. When all n + 1
attributes are equal, the message is simply discarded.

Initially for every node v ∈ V : E = K(v) ∧ P = false. A node is triggered to start the election
procedure, either by some external event, or upon receiving an election message when P = false.
When a node is first initialized, it will send its current election candidate E (which is initially set to
its own key) to its neighbours before possibly processing a received message. On top of that it will
set P to true. As will be explained in Section 5.6.2, the root election procedure takes a time of at
most troot ≤ 2d(ξ+ + µ+) with d the network diameter, ξ+ the maximum one-way communication
delay and µ+ the maximum node packet processing time. Therefore every node can assume that
the election has ended when troot + ∆ has passed since its election process was initiated, with ∆
some arbitrary time offset. After this time a node will set its variable P back to false.

4.1.2 Anchor node election

Before geometric routing is possible, the network has to be embedded into a space. Herein, every
network node is assigned coordinates. By using these coordinates, distances can be calculated
between pairs of nodes, which forms the basis of a geometric routing system. To engage the
graph embedding procedure, every node in the network has to take part in a distributed election
procedure. This election procedure enables the detection of the anchor node set by employing a
hop count based distance function, similarly to the NoGeo system by Rao et al. (2003). It differs
from this latter system in the distance function used. NoGeo elects nodes that have a maximal
distance to each other, while SALT strikes a balance between maximizing the distance between
each anchor node and minimizing the standard deviation of the distance of an anchor node to each
other anchor node. This results in more evenly spread anchor nodes. Before the anchor nodes are
elected, an initial node x is elected with the following attributes (assume a receiving node u):

CHAPTER 4. PRELIMINARY RESEARCH 42

• A(0) = K(E), first the key of the election candidate is compared. Therefore the node with
the highest node key is elected.

• A(1) = −h(E , u), in which h(E , u) is the hop count to the candidate. Therefore the lowest
hop count to the candidate E is stored.

When the initial node x has been elected, a first anchor node a(0) is elected which with the following
attributes:

• A(0) = h(E , x), select a node with a maximum hop count to the initial node x.

• A(1) = K(E), break ties based on the node key.

After x and a(0) have been elected, an arbitrary number of anchor nodes a(i) are chosen that meet
the following property

a(i) = arg max
v∈V

{
h̄i(v)2

σh(v)

}
(4.1)

with h̄i(v) being the average hop count from v to all the previously calculated anchor nodes defined
as

h̄i(v) = 1
i

i−1∑
j=0

h
(
v, a(j)

)
(4.2)

with h(v, a(j)) the shortest path hop count of v to anchor node a(j). σh(v) represents the standard
deviation of the hop counts h(v, a(j)). To elect these anchor nodes, the following attributes are
used (assume a receiving node u):

• A(0) = h̄i(E)2/σh, first the normalized average hop count to every previously calculated
anchor node is evaluated.

• A(1) = −h(E , u), this attribute triggers an update when a candidate with the same normalized
average hop count is received, but the hop count to it is lower. This makes sure that every
node knows the shortest path length to every anchor node.

• A(2) = K(E), used to break ties based on the node key.

By employing these election attributes, nodes that are spread out evenly over the network are
elected as anchor nodes. This is caused by maximization of the normalized average hop count.
The reason for using election attribute A(1) is to make sure that every node knows the shortest
path length to all anchor nodes that have been elected. This hop count will recursively be part
of the next election rounds. The network after this stage can be viewed in Figure 4.1. It shows a
UDG with 500 nodes in which the anchor nodes are elected.

CHAPTER 4. PRELIMINARY RESEARCH 43

Figure 4.1: The election of six anchor nodes (the big black dots in the figure) by SALT.

4.1.3 Graph embedding procedure

Once the anchor nodes have been elected, they are embedded into the Euclidean plane by assigning
coordinates in R2 to each of them.7 The embedding procedure is much like the procedure described
by Zhou et al. (2010). Assume a set of n ≤ |V | anchor nodes

{
a(0), a(1), . . . , a(n−1)} has been elected

by the previous election procedure. First, a(0) is placed at an arbitrary but fixed position, e.g.
a(0) = (0, 0). Hereafter, a(1) is placed at a distance that equals the minimal hop count to a(0),
multiplied by some constant scaling factor α. This hop count is known because it was the selection
attribute A(1) in the election procedure. Denote the hop count from anchor node a(i) to a(j) as
hi,j , then a(1) is placed somewhere on the circle with radius R = αh1,0 and centre point a(0).
The justification is that it does not matter where the first and second anchor nodes are located
because different locations only entail a translation, rotation or mirroring of the final embedding.
The parameter α is a scaling factor that may be chosen arbitrarily. The third anchor node a(2)

is placed at the point for which holds
(∣∣a(2) − a(0)

∣∣ = αh2,0
)
∧
(∣∣a(2) − a(1)

∣∣ = αh2,1
)
. It is thus

placed at one of the crossings of the two circles centred at a(0) and a(1) with radius R0 = αh2,0 and
R1 = αh2,1. The choice of which crossing to take is arbitrary as it will only result in a mirroring
of the final embedding.
After the nodes a(0), a(1) and a(2) are embedded, the other anchor nodes have their coordinates
assigned by a metaheuristic called simulated annealing (SA). This is different from the work of
Zhou et al. (2010) in which a PSO optimization algorithm was used. In the former single-solution
metaheuristic an objective function f : R2 → R is minimized, defined as

f
(
a(i)
)

=
i−1∑
j=0

(√(
a

(i)
0 − a

(j)
0

)2
+
(
a

(i)
1 − a

(j)
1

)2
− αhi,j

)
(4.3)

It represents the difference between the distances in the embedded space to all the other anchor
nodes known so far, and the corresponding scaled hop count distance. Thus the anchor nodes are

7Note that in the following text we will not make any distinction between the node and its corresponding point
in the embedding space. For example say a graph G = (V,E) is embedded into a space S. A vertex v ∈ V also
represents a point v ∈ S with coordinates denoted as (v0, v1, . . . , vn).

CHAPTER 4. PRELIMINARY RESEARCH 44

Figure 4.2: The anchor nodes are embedded into E2. Their position is reflected by the big black dots in
the pictured graph.

essentially used as a reference point. Figure 4.2 depicts the network of Figure 4.1 after all anchor
nodes have their coordinates assigned. Non-anchor nodes v ∈ V have their coordinates assigned
in the exact same way by minimizing f(v), they can however take advantage of a complete set of
anchor nodes.

The simulated annealing (SA) algorithm which minimizes f is inspired by the cooling of a physical
substance. It mimics a substance that is strongly heated until it becomes completely fluid. Here-
after it is cooled, by which crystal structures are formed. When cooling too fast, imperfections
arise. This is caused by the lack of a thermic equilibrium at each temperature. Strong and big
crystals can only be formed by a long enough cooling procedure which, however, requires an infinite
amount of time. SA as such, simulates the energy state of the system that is being cooled to a
certain minimal temperature. This energy function is represented by the objective function.8. SA
is a memoryless optimization algorithm.9 This means that no information is kept regarding its
previous system states. As a result it is not possible to steer the annealing process based on its
history, e.g. to avoid loops. However, it has to be noted that the SA implementation used here
keeps track of the global optimum found so far.

The algorithm starts at an initial temperature T0. At every couple of iterations of the process,
called the equilibrium criterion, this temperature is lowered by applying an update function. The
temperature updating rule applied here is

Ti+1 = βTi (4.4)

with β ∈ [0, 1[the cooling rate. At every iteration a random neighbour is generated. This neigh-
bour is then accepted or discarded, based on its objective function value. To be able to accept
worsening solutions —and escaping local minima in the object landscape— the chance of accepting
a worsening solution is modelled by the following Boltzmann distribution:

P (∆E, T) = e
−∆E
T (4.5)

8Simulated annealing has been originally designed by Kirkpatrick et al. (1983)
9Although in our implementation the best solution found so far is memorized by the algorithm.

CHAPTER 4. PRELIMINARY RESEARCH 45

Algorithm 4.1: Embedding procedure for each vertex in SALT
input : vertex v ∈ V of the graph G = (V,E)
output: coordinates (v0, v1) ∈ R2 for vertex v

1 (v0, v1)← (0, 0)
2 T ← Tmax
3 repeat
4 i← 0
5 repeat
6 r1 and r2 random numbers ∈ [a, b] with a, b ∈ R
7 generate neighbour: (v0, v1)′ ← (v0 + r1, v1 + r2)
8 ∆E ← f((v0, v1)′)− f((v0, v1)) with f as objective function
9 generate random number r ∈ [0, 1]

10 if r ≤ e−∆E
T then

11 update the current solution: (v0, v1)← (v0, v1)′
12 end
13 i← i+ 1
14 until i > imax // imax is the equilibrium criterion
15 cooling schedule: T ← β · T
16 until T < Tmin // Tmin is the stop criterion

with T the temperature at the moment of evaluation and ∆E the difference between the new and
the old objective value when hypothetically accepting the new solution. How this algorithm is
applied to the embedding procedure is shown in pseudo-code in Algorithm 4.1.

As the temperature is lowered at every update, the chance of accepting a worsening solution also
lowers. At the start of the heuristic search many worsening solutions are accepted in order to
discover the full search space. As the search process goes on, neighbouring solutions of bad quality
are increasingly rejected. The end of the search is determined by the stop criterion. This may be
arbitrarily chosen, but in SALT it is determined by the reaching of a minimal temperature Tmin.
Figure 4.3 depicts the embedding of the network in Figure 4.2 after the SA algorithm has finished
for all nodes.

4.1.4 Relaxation of the embedding

Finally the coordinates of the embedded nodes are relaxed by applying a spring-relaxation algo-
rithm. Its goal is to make the graph faces more convex. For this, Hooke’s law is utilized as Leong
et al. (2007) and Zhou et al. (2010) describe. Based on this law a force ~Fuv ∈ R2 is applied to all
node u ∈ V , which is defined as

~Fuv = k · (luv − |~u− ~v|)× n(~u− ~v) (4.6)

with k ∈ R being the spring constant; luv the relaxed spring length, and ~u,~v ∈ R2 with v ∈ N(u);
n : R2 → R2 a function that turns a vector into a unit vector. This force drives the distance |~u−~v|
towards its relaxed spring length, this constitutes the first term of Eq. (4.6) minus the factor k.
A difficulty is estimating good relaxed spring lengths as only the graph topology is known. It is
possible however, to estimate this length based on the principle that nodes close to each other

CHAPTER 4. PRELIMINARY RESEARCH 46

Figure 4.3: All nodes are embedded, nodes are drawn corresponding to their position in the embedding
space.

in terms of hop count distance will probably have many neighbours in common. Of course the
opposite is also true. Thus the length can be modelled as

luv = l+ − ruv(l+ − l−) (4.7)

with ruv ∈ [0, 1] being the ratio of the number of common neighbours versus the total number of
neighbours of the vertices u and v defined as

ruv =

0 : N = 0
|Nuv|
N

: N > 0
(4.8)

with l+ and l− the maximum and minimum spring lengths which can be defined arbitrarily;
Nuv = N(u) ∩ N(v) is the number of distinct neighbours that the two nodes have in common;
N = (N(u) ∪N(v))\{u, v} is their total number of neighbours, excluding themselves. The forces
~Fuv for all nodes v ∈ N(u) aggregate into a net force ~Fu of vertex u, calculated by summing all
partial forces:

~Fu =
∑

v∈N(u)

~Fuv (4.9)

Now a node will update its coordinates iteratively according to the following equation

~u = ~u+
min

{
|~Fu|, α(t)

}
|~Fu|

· ~Fu (4.10)

based on a counter t. At every update a node also broadcasts its coordinates to its surrounding

CHAPTER 4. PRELIMINARY RESEARCH 47

neighbours. These will then make use of the updated coordinates to calculate their own coordinates,
better approximating the network topology. α(t) represents a damping constant of the spring
relaxation system:

α(t) =
{

αmax : t < T

αmax · e−
t
T : t ≥ T

with T being the maximum t value, which can be chosen arbitrarily. Good values for the constants
k, l+, l−, αmax and T can be found in Leong et al. (2007) and Zhou et al. (2010). Figure 4.4
shows the embedding after the spring-relaxation algorithm has finished, applied to the network of
Figure 4.3.

Figure 4.4: All nodes have their coordinates relaxed by the spring-relaxation algorithm. The graph layout
reflects the positions of the nodes according to the embedding.

4.1.5 Results of applying SALT to generic networks

While geometric routing based on the Euclidean embedding generated by SALT with a correspond-
ing Euclidean distance function works very well for networks that can be modelled as UDGs, it
performs badly on scale-free networks, contrarily to the results of Wang et al. (2012). Apparently
the characteristics needed to embed a network into a Euclidean plane are not present in this class
of networks. Hence the embedding procedure of SALT cannot generate a graph embedding which
matches the network topology. Therefore it can be concluded that geometric routing based on
Euclidean embeddings can be excluded as possible candidates for geometric routing inside the
Internet backbone. The results of SALT applied to different types of networks can be seen in
Table 4.1.
The fact that the stretch is still relatively low is due to the backup system which employs a spanning
tree-based embedding. Without this backup mechanism, the success rate of the algorithm is be

CHAPTER 4. PRELIMINARY RESEARCH 48

Table 4.1: Results of SALT applied to different types of network. For each network type SALT was ran
10 times for 106 random source-destination pairs, with Pareto distributed traffic (according
to Eq. (3.1) in Chapter 6).

UD1k R1k SF1k

βE 0.534 0.074 0.060
βV 0.168 0.001 0.001
ρ 1.029 1.930 1.710
λE 0.933 3.543 3.965
λV 2.226 28.87 31.41

99.75% for the network UD1k, while only 0.14% for R1k and 0.12% for SF1k (more information
about these networks can be found in Appendix A). Therefore other types of geometric routing
systems should be examined which allow routing on more general graphs. The results presented
here lead us to believe that structured embeddings are more attractive and are more flexible. These
structured embedding-based systems have coordinates assigned according on a fixed structure,
which will be investigated next.

4.2 Structured embeddings

A second class of geometric routing systems are those based on structured graph embeddings.
Herein the coordinate assignment in some mathematical space is guided by a fixed structure. For
many systems this structure is embodied by a spanning tree of the underlying network. Using
spanning trees is popular for two reasons. Firstly one may always construct a spanning tree
of a graph, as long as it is connected. Secondly, because for every node a unique path along its
ancestors towards the root node can be generated, it intuitively admits the construction of a greedy
embedding. In the subsequent sections, three different tree-based geometric routing systems are
investigated, each making use of a graph embedding in a different mathematical space.

4.2.1 Virtual Polar Coordinate Routing (VPCR)

Newsome & Song (2003) proposed a routing mechanism called Virtual Polar Coordinate Routing
(VPCR). VPCR makes use of so-called polar coordinates, which are doubles (θa, θb) ∈ R2 : 0 ≤
θa, θb ≤ 2π ∧ θa < θb. These doubles represent, what the authors call, polar ranges. To construct
the embedding, a spanning tree T is build. The root node r of T is first assigned a polar range
(θa, θb) = (r0, r1) = (0, 2π), the maximum polar range. The root will then calculate the polar
ranges for its children c(0), c(1), . . . , c(n) in the tree. These child nodes each get a non-overlapping
slice of their parent’s polar range:

c(i) =
(
r0 + i

(
r1 − r0

n+ 1

)
, r0 + (i+ 1)

(
r1 − r0

n+ 1

))
∀i ∈ {0, 1, . . . , n} (4.11)

Because every polar range is unique and is a subset of the polar range of its parent, each node can
be located in the tree. When the root node has allotted each of its children a set of coordinates,
these will recursively compute and assign coordinates to their children, which is illustrated in

CHAPTER 4. PRELIMINARY RESEARCH 49

Figure 4.5.

a

(0, 2π)

b

(0, π)

d(
0, π3

) e(
π
3 ,

2π
3
) f(2π

3 , π
)

c

(π, 2π)

g(
π, 3π

2
) h(3π

2 , 2π
)

Figure 4.5: VPCR: when routing solely on the spanning tree itself, the path 〈f, b, a, c, h〉 would be taken.
On the other hand when a link between f and c exists, shortcuts in the tree are possible,
thus traffic is sent along 〈f, c, h〉. If a shortcut link between node f and g exists (the dashed
edge (f, g)), smart routing allows the forwarding of traffic from f to g as

(
π, 3π

2

)
is closer to

h than
(

3π
2 , π

)
.

As the geometric routing paradigm dictates, forwarding in each node u is based on the coordinates
of its local neighbourhood N(u) and their distance to the destination. However in VPCR there
is no distance function defined for the polar space. The forwarding decision in a node u is made
by selecting the ancestor a ∈ N(u) of the destination d with the smallest polar range. Also a set
of nodes that are descendants of D(d) ⊆ N(u) is selected, as well as the parent p ∈ N(u) of the
current node u. The node a is chosen such that [d0, d1] ⊆ [a0, a1]∧ (a1−a0) = minv∈N(u){v1−v0}.
The set D(d) is each node w ∈ N(u) : [w0, w1] ⊆ [d0, d1]. The selection of the current parent p is
analogue to that of a. Forwarding in u is then done by selecting a random element r ∈ D(d), after
which a random selection between a and r is executed. When no such node can be selected because
a and r do not exist, p is chosen as the next node. This node will always exist, due to the nature
of the spanning tree used to form the embedding. The reason for using this complex forwarding
decision is the absence of a distance function by which nodes can be evaluated. It cannot always
be known how many hops a certain node is removed from the destination, only whether it will be
able to reach the destination or not.

As the polar ranges are divided at every level of the tree, the precision required to represent those
increases. The authors have proposed to expand the default [0, 2π] range arbitrarily to [a, b] with
a, b ∈ R. This does not change the asymptotic storage complexity of the coordinates though.
Assuming a 3-regular tree, at every depth of the tree the range is divided by two. In a binary
representation, this results in an extra required storage bit as the depth increases at the very least.
The depth of a balanced 3-regular tree has a complexity of O(log |V |) for a graph G = (V,E).
Therefore the storage requirement has a similar complexity in an average-case scenario.

When no node a exists and the set D(d) = ∅, the traffic has to be routed upwards towards the
root of T . This results in the links incident to nodes at lower tree depths getting congested. A

CHAPTER 4. PRELIMINARY RESEARCH 50

traffic bottleneck is formed around the root. The authors report a solution called smart routing in
which traffic may be routed towards nodes with polar ranges that are closer to the destination (see
Figure 4.5). This is however largely assumes that the underlying network is a UDG, because the
polar ranges should correspond with some layout in the two-dimensional Euclidean plane. This is
also hard to achieve in a distributed setting. Smart routing seems to diminish, but not eliminate
the root traffic hotspot.10

4.2.2 Hyperbolic routing

Kleinberg (2007) has proven that there exists a greedy embedding into the hyperbolic plane H2

for a d-regular tree for all d ≥ 3. The algorithm presented by Kleinberg requires that the node
with the largest connectivity is known, e.g. by an election process. A more general online greedy
embedding scheme for the hyperbolic plane was proposed by Cvetkovski & Crovella (2009) which
is shown in Algorithm 4.2 and will be used in this thesis.

R

∂H

Figure 4.6: Graph embedding into H2 based on Algorithm 4.2. The nodes are drawn in the Poincaré
disk model based on their assigned coordinates; the solid lines represent the tree edges while
R is the root vertex.

The hyperbolic space H2 employed in the hyperbolic routing system is represented in the Poincaré
disk model. Herein points in the n-dimensional hyperbolic plane Hn are points on a n-dimensional
unit disk. In this model lines as known in the Euclidean space E2 are parts of circles that are
inside of, and orthogonal to, the unit circle in H2. The centre forms the origin while the points on
the unit disk ∂H are considered ideal points. Ideal points in the Euclidean space would be points
at infinity. The distance between two points u and v with coordinates in R2 with a distance to the

10Newsome & Song (2003)

CHAPTER 4. PRELIMINARY RESEARCH 51

origin lower than one, is given by

δ(u, v) = arccosh
(

1 + 2 |u− v|2

(1− ||~u||2) (1− ||~v||2)

)
(4.12)

with ~u and ~v the vectors associated with the points u and v. This represents the curved distance
along the circle segment of the circle passing through both points, while being orthogonal to
∂H. The biggest downside to using hyperbolic routing is perhaps that the distance calculation is
computationally complex when compared to other schemes like RTP, which is discussed next.

Algorithm 4.2: Online greedy embedding scheme
input : a graph G = (V,E) with a spanning tree T = (V,E′) : E′ ⊂ E rooted at r ∈ V ;

every vertex knows its parent and children
output: coordinates (v0, v1) ∈ R2 : −1 < vi < 1 ∀ v ∈ V in the Poincaré disk model

1 assign an initial coordinate double (r0, r1) to the root node r as specified by Cvetkovski &
Crovella (2009)

2 set initial angles for root node αr ← π and βr ← 2π
3 calculate root node numbers ar, br ∈ C with ar ← eiαr and br ← eiβr

4 foreach v ∈ V do
5 the parent of v, p(v) sends its coordinates to v along with αp(v) and βp(v).
6 starting angle for v is set to αv ← αp(v)

7 ending angle is the average of both parent angles βv ←
αp(v) + βp(v)

2
8 parent starting angle is updated αp(v) ← βv
9 complex numbers are calculated for v as av ← eiαv and bv ← eiβv

10 calculate m← a+ b

2 , then R2 ← 1
|m|2

− 1, finally h← 1
m∗

with m∗ the complex

conjugate of m

11 coordinates for v are calculated: R2

p(v)∗ − h∗ + h with p(v) now representing the

coordinates of its parent

12 αv is prepared for recursive coordinate assignment of its children αv ←
αv + βv

2
13 end

4.2.3 Routing with Position Trees (RTP)

In Routing with Position Trees (RTP) an underlying spanning tree is labelled. In a labelling
process every parent assigns a unique number to its children. These children will then construct a
new label based on this unique number and the labels of their parents. The root node is assigned
an arbitrary number as a label. These labels then act as coordinates that can be used in geometric
routing. The distance between two nodes is the shortest path between them when only taking
into account edges of the spanning tree. Routing based on labelled trees will be explained in great
detail in Chapter 5.

CHAPTER 4. PRELIMINARY RESEARCH 52

4.2.4 Comparison

Hyperbolic routing was compared with RTP and VPCR. All systems had one single tree that was
rooted at the highest-degree node. A breadth-first tree-growing process made sure a tree of minimal
depth was formed in all occasions. Pareto distributed traffic (according to Eq. (3.1) in Chapter 6)
was generated between random source-destination pairs of the network SF500 (see Appendix A for
more information). The different routing schemes were evaluated on load balancing behaviour and
average stretch, the results are presented in Table 4.3.

Table 4.2: Results of comparison between hyperbolic routing, RTP and VPCR on the graph SF500. The
experiment involved 10 spanning tree constructions rooted at the highest-degree node for every
routing mechanism. Then 106 random source-destination pairs were generated between which
Pareto distributed traffic was simulated.

hyperbolic RTP VPCR

βE 0.127 0.211 0.047
βV 0.107 0.127 0.058
ρ̄ 1.481 1.325 1.514
λE 2.615 1.933 4.485
λV 2.880 2.611 4.028

Table 4.3: Fraction of identical paths when using the same underlying spanning tree for the same source-
destination pairs when comparing the algorithms two by two.

between fraction

hyperbolic-label 9.6%
polar-hyperbolic 7.7%
tree-polar 9.4%

These results show that using RTP scores the best in terms of stretch and load balancing, while
having a computational complexity far less than hyperbolic routing. It also avoids the requirement
of floating-point coordinate representations by relying solely on integers. To test whether the
differences in routing performance could be due to the way the spanning tree was formed, an
experiment was set up that generated embeddings for the difference routing system using the
exact same spanning tree. Next traffic was routed for random source-destination pairs for each of
the routing systems. The results of this (see Table 4.3) show that only approximately 10% of the
paths were identical. Therefore we are certain that the systems truly generate different routing
paths, even when using the same underlying tree. This leads to the conclusion that the difference
in performance is due to the design of the routing algorithms. Because of the beneficial results of
RTP and its low computational complexity, RTP will be chosen as a foundation to develop the
main routing mechanism of this thesis, called Forest Routing (FR), which will be explained in the
next chapter.

Chapter 5

Forest Routing

Based on the preliminary research set forth in the previous chapter, a family of geometric routing
systems called Forest Routing (FR) is proposed, which forms the main contribution of this thesis.
This chapter will focus on the design of the algorithms while the experimentation and evaluation
of their different parameters is done in Chapter 6.

5.1 Introduction

The FR system is based upon Routing with Position Trees (RTP)1 and the tree labelling procedure
of Korman et al. (2002). RTP was chosen over hyperbolic routing2 or VPCR3 based on the results
of Table 4.3 and its low computational complexity. In RTP, nodes are labelled according to a
spanning tree of the network. When interpreting these labels as coordinate sets, combined with an
appropriate distance function, RTP can be seen as a geometric routing algorithm in which the node
labelling process corresponds to the graph embedding procedure. Because the labelling procedure
is entirely dependent on the spanning tree used, it can be classified as a structured embedding
procedure. This is in contrast to the Simulated Annealing Label Trees (SALT) algorithm described
earlier which was iterative by nature. Spanning trees are strong candidates to form a structured
embedding as they are naturally present in any connected graph. As our target network, the
Internet backbone, is a connected structure, it is always guaranteed that a spanning tree can be
formed. Tree-like structures also naturally emerge from the hierarchical topology of scale-free
graphs4. Another advantage of using labelled spanning trees is the preservation of information
regarding the relative position of a node in its underlying tree. This makes it easy to define a
distance function. In the subsequent sections the terms graph and network, vertex and node as
well as link and edge will be used alternately to describe the same structures. To guide the reader,
a roadmap for the upcoming sections is given in Figure 5.1 and at the end of every major section,
a small recapitulation is given.

1Chávez et al. (2007)
2Kleinberg (2007)
3Newsome & Song (2003)
4Papadopoulos et al. (2010)

53

CHAPTER 5. FOREST ROUTING 54

foundation 5.2

tree space
5.2.1

metric space
5.2.2

routing
5.2.3

load balancing 5.3

m-hop
5.3.2

GFR LBFR HFR
5.3.1

embedding procedure 5.4

HKE HDE AE
5.4.1

FM BFM BFRM RM
5.4.2

network dynamics 5.5

link capacities
5.5.1

fault-tolerance
5.5.2

changing topology
5.5.3

complexity analysis 5.6

coordinate length
5.6.1

root election
5.6.2

tree growing
5.6.3

router architecture
5.6.4

Figure 5.1: A roadmap of the structure of this chapter, it reveals how the sub-components of FR will be
explained.

5.2 Foundation

In this section a theoretical foundation regarding geometric routing based on the labelling process
of Korman et al. (2002) and Routing with Position Trees (RTP) of Chávez et al. (2007) will be
set-up, which forms the basis of the FR system.

5.2.1 Tree space

Geometric routing systems make use of the graph embedding concept. Such an embedding is a
mapping between the vertices of a graph and certain mathematical space as defined in Defini-
tion 2.7. Every vertex is assigned a unique tuple of coordinates corresponding to a point in the
space. For example a graph can be embedded into the two-dimensional Euclidean plane E2 with
Cartesian coordinates in R2 assigned to each vertex. However, instead of the Euclidean space, the
FR mechanism makes use of a so-called tree space, denoted as T, which will be defined formally
later on. The main advantage of using T is the existence of a greedy embedding for every connected
graph. This greedy embedding of a graph G = (V,E) into T is a mapping T : V → T. To explain
what this space T represents we will depart from the construction of a possible greedy embedding,
denoted as T , into T.

CHAPTER 5. FOREST ROUTING 55

...

a

(0, . . . , ai)

b

(0, . . . , ai, 0)

d

(0, . . . , ai, 0, 0)

e

(0, . . . , ai, 0, n− 1)

f

(0, . . . , ai, 0, n)

c

(0, . . . , ai, 1)

...· · ·

Figure 5.2: Coordinates assigned to a tree in T. The red dashed line represents routing on the spanning
tree with f as the source node and a destination node that is a predecessor of c. The blue
dashed line represents a shortcut in the tree, when employing the tree distance metric this
shortcut would be taken to route directly to c instead of the path 〈b, a, c〉.

To construct such a greedy embedding5, a spanning tree T = (V,E′) of G is needed with E′ ⊆ E

and a root vertex r. Such a spanning tree can be constructed by an arbitrary tree-generation
procedure, e.g. the procedure explained in Section 5.4. Hereafter every vertex u ∈ V can be
assigned a set of unique coordinates T (u) ∈ T by running a labelling process6. This labelling
process starts by assigning r, the spanning tree T root node, the coordinate 1-tuple (0). This
root node is said to reside at depth 1 in the tree. One level deeper in the tree, the root’s children
are assigned a number in {0, 1, . . . , (dG(r) − 1)}. From this follows that all vertices at depth two
have coordinate 2-tuples (doubles) in the shape of (0, a1). Recursively, vertices at depth n have
coordinate n-tuples (0, a1, a2, . . . , an−1). This labelling process is depicted in Figure 5.2. Note that
the coordinates of a node u can be computed solely by using information about its local 1-hop
neighbourhood N(u), simply by means of message passing.

Now the mathematical space T can be defined as the target space of the previously explained em-
bedding. This means that every node corresponds to a point in T. More generally, the coordinates
of a vertex u are represented by an n-tuple in Nn for n ≤ d, with d the depth of T and n the depth
at which the vertex resides in T . The arity of the coordinate tuple therefore holds information
about the vertex’ relative position in the spanning tree T with a specific root. Therefore T can be
defined as

T =
⋃
n∈N

(
(0)_ Nn

)
(5.1)

The function (_) : Nm × Nn → Nm+n is the concatenation of two tuples. Note that T is very
5Chávez et al. (2007)
6This has been formally described by Korman et al. (2002).

CHAPTER 5. FOREST ROUTING 56

general, and as such one may very well construct embeddings into T without making use of an
underlying spanning tree. Though these would classify as graph embeddings into T, they are not
necessarily greedy. Whenever an embedding in T is denoted as T in this text, a greedy embedding
is meant, constructed by employing a spanning tree T as previously explained.

5.2.2 Tree metric space

Next to the tree space and its corresponding graph embedding, the core of a geometric routing
system consists of a distance function. The combination of a mathematical space and a distance
function is called a metric space, formally defined subsequently.

Definition 5.1. For a set X and a function f : X × X → R such that the following conditions
hold ∀u, v, w ∈ X:

1. f(u, v) ≥ 0 ∧ f(u, v) = 0⇔ u = v

2. f(u, v) = f(v, u)

3. f(u,w) ≤ f(u, v) + f(v, w)

Then f is called a metric and the double (X, f) is called a metric space.

For example, when X = Rd with f(u, v) =
√∑d−1

i=0 (ui − vi)2, then (X, f) is the d-dimensional
Euclidean metric space. In the same manner the tree space can be combined with its corresponding
distance function: X = T and f = δ. The distance δ between two points in T is defined as follows.
It is the sum of the hop counts between the source and destination vertex and their common
ancestor, which corresponds to the shortest path between the two vertices when only using edges
in E′ of the tree T = (V,E′). This is illustrated with an example in Figure 5.2. Assume a source
vertex e and a destination vertex c, now their common ancestor is vertex a. The hop count of
e to a equals 2 and the hop count from c to a equals 1. The distance in the tree space is thus
δ(e, c) = (2 + 1) = 3. This distance can thus be written down as

δ(u, v) = depth(u) + depth(v)− 2 · depth(w) (5.2)

with w the common ancestor of u and v in T . The function depth(u) represents the depth of u
in the tree T , which is the position of u on the shortest path between the root of T (start vertex)
and u (end vertex). This distance can be easily calculated using implicit information included in
the coordinates of a node. The length of the coordinate tuples represent the depth at which the
vertex resides in the tree used to build the embedding. To illustrate this, assume two vertices u
and v with coordinates

T (u) = (a0, a1, a2, b3, . . . , bn), n ∈ N (5.3)

T (v) = (a0, a1, a2, c3, . . . , cm), m ∈ N (5.4)

then the common part is the triple (a0, a1, a2). For the remainder of this text, no distinction will
be made between the notations u and T (u), because every vertex corresponds to exactly one set
of coordinates in its embedding space. From the context in which the symbol is used it should be

CHAPTER 5. FOREST ROUTING 57

clear whether the vertex itself is meant or its corresponding point in the embedding. The distance
equation can therefore be re-written as

δ(u, v) = |u|+ |v| − 2|φ(u, v)| (5.5)

with φ : Nn × Nm → Np (p ≤ min{m,n}) the function generating the largest common prefix of
two tuples; |u| represents the length of the coordinate tuple u. This results in a distance function
δ : T × T → N that, together with the space T, forms the metric space (T, δ) which can easily be
proven.

5.2.3 Routing

After a graph embedding T into T has been constructed, the underlying tree T used for the
construction is no longer needed and is thus discarded. This means that routing happens entirely
by the principles of geometric routing, based on a graph embedding T and a distance function δ.
It is important to note that routing based on T is different than routing on spanning tree T . In
spanning tree routing a routing path can only use tree edges. However here, assuming we have
a spanning tree T = (V,E′) of a graph G = (V,E) with E′ ⊆ E, shortcuts can be taken. These
shortcuts are edges e for which holds e ∈ E ∧ e 6∈ E′. As a result, traffic congestion in links
between nodes at lower tree depths7 is partially avoided, which is a major downside of spanning
tree routing. This is thus a form passive load balancing. However, the effect of using shortcuts
alone is not enough to obtain true traffic load balancing. How active load balancing using link load
information can be achieved will be explained in Section 5.3.

5.2.4 Recapitulation

At this point a baseline geometric routing mechanism has been established. This baseline mecha-
nism consists of a theoretical tree space T with a corresponding greedy embedding T and a distance
function δ. In the following sections this baseline mechanism will be extended to tackle the problem
of load balancing.

5.3 Load balancing

As mentioned earlier, the spanning tree root node suffers from high congestion on its incident
links under a uniform traffic matrix. A possible solution would be to utilize the ad-hoc routing
decision making of geometric routing schemes for every packet independently. Allowing nodes
to alter their forwarding decisions based on the current link load would potentially lead to load
balancing. This principle of actively manipulating traffic according to the current load in order to
reduce congestion is called active load balancing. But first, a maximum of passive load balancing
should be established. The final routing scheme should then maximize the total load balancing
effect by effectively combining these two types.

7Newsome & Song (2003)

CHAPTER 5. FOREST ROUTING 58

5.3.1 Multiple embeddings

A first step towards load balancing is the use of k spanning trees Ti = (V,E′i) with E′i ⊆ E ∀i ∈
{0, 1, . . . , k− 1} to form k greedy embeddings of the same graph G = (V,E) into T instead of only
one.8 The different embeddings are denoted as Ti with i ∈ {0, 1, . . . , k − 1}. The notation δ is
now used to denote the k-tuple of distances in all of the k embeddings. Therefore δi represents the
tree space distance for the i-th embedding Ti. By using a multi-embedding it might be possible to
avoid the traffic congestion at nodes residing at lower tree depths. The reason is two-fold: firstly,
because of the existence of k different root nodes, traffic congestion should be divided amongst
them. Secondly due to having multiple embeddings, the chances of having shortcuts available
should increase, yielding a less crowded root and an overall lower stretch. The trade-off made here
is an increased storage requirements of the packet headers given that the destination now has a
set of coordinates for every embedding, in favour of more forwarding freedom. It also leads to an
increased computational complexity of the forwarding decision making. However due to its high
parallelizability, increased processing time can be mitigated as will be shown in Section 5.6.4.

5.3.1.1 Greedy Forest Routing (GFR)

A straightforward way of routing with multiple embeddings would be to allow a node to freely
alternate between different embeddings because of their individual greediness. However, this naive
selection mechanism fails because of the lack of mechanism that avoids the introduction of cycles in
routing paths. When routing along a distance-decreasing path in Ti, the distance in an alternative
embedding Tj may increase. A node further down the routing path may decide to use Tj and
routes the packet back towards its starting point. Enforcing the restriction that the distance should
decrease in every embedding is hardly an option, as it cannot be guaranteed that this aggregation
of greedy embeddings is greedy on its own. Also the exclusion of nodes that have already been
reached is not an option as it cannot be guaranteed that a packet will not encounter a void. A
solution is ensuring that the path decreases its lowest distance (out of all the embeddings) at every
hop. This way of working is similar to Tree Cover Based Geographic Routing with Guaranteed
Delivery (TCGR)9 in which the minimum of distance for multiple embeddings is used to guarantee
packet delivery. For this reason a new distance function ε : Tk × Tk → N is defined as

ε(u, v) = min
0≤i<k

{δi(u, v)} ∀u, v ∈ V (5.6)

The multiple embeddings are now treated as a single embedding in the k-dimensional space Tk.
Now a new relaxed-metric space can be defined as (Tk, ε). It cannot be regarded as true metric
space because the triangle-equality (property three in Definition 5.1) does not hold any longer,
hence we call it relaxed. Routing is now done greedily based on a graph embedding into the space
Tk with the ε distance function. When a node has multiple neighbours with the same ε-distance,
a random forwarding selection is made among them. This routing mechanism is called Greedy
Forest Routing (GFR), which is a special case of the final Forest Routing (FR) system. The goal is
to obtain a decreased stretch in combination with improved load balancing behaviour compared to

8The use of multiple tree embeddings is supported by the work of Tang et al. (2010) in which the authors use
multiple embeddings to achieve passive load balancing for greedy routing.

9Tang et al. (2010)

CHAPTER 5. FOREST ROUTING 59

routing using a single tree-based embedding. This should logically follow from the fact that there
is a larger chance of finding a shortcut in k embeddings compared to using a single embedding.
As a result shorter paths should be taken which avoid the root node, a natural hotspot in T .
Furthermore traffic should now be spread over k different root nodes, dividing the original root
hotspot among different areas of the network. The effect of using different k-values on the stretch
and the load balancing behaviour of GFR is analysed in Section 6.1 of the results chapter.

5.3.1.2 Load Balanced Forest Routing (LBFR)

To supplement the passive load balancing behaviour emerging from a multi-embedding, an active
load balancing technique has been developed. In this system, nodes u ∈ V make use of information
regarding the traffic load of their incident edges e ∈ I(u). Solely using local link load information
is advantageous as it is scalable by nature and therefore fitting for a large-scale distributed setting.
This new system called Load Balanced Forest Routing (LBFR) relaxes the distance-decreasing
requirement of GFR. Routing on varying embeddings Ti independently is now allowed. Because
naive switching between embeddings may introduce cycles, it is guided by an auxiliary function κ.
Hereby the coordinate system that is inherently oblivious (see Definition 2.6) is extended with a
non-oblivious function that is dependent on the path followed by a packet. The value of κ of the
previous node along a path is sent on to the next node by including it as additional information
in the packet header. As such every node is able to calculate their own κ-value without having to
query all nodes along the travelled path. The function κ makes use of a function δ∗ : P ×Tk → Nk

which outputs a k-tuple storing the minimal distance to a destination d attained by a packet so far
along its routing path Pu, before arriving at the current node u, for each of the k embeddings. The
set P represents the union of all possible paths of the network. The i-th element of δ∗ is denoted
as δ∗i . Assume a packet has been routed along the path P = 〈p0, p1, . . . , pn〉 towards a destination
vertex d, the function κ is then of the type P × Tk → N and is defined as

κ(Ppn , d) =
k−1∑
i=0

δ∗i (Ppn , d) (5.7)

with δ∗(Ppn , d) a function of the type P × Tk → Nk that is defined recursively as

δ∗i (Pp0 , d) = δi(p0, d) (5.8)

δ∗i (Ppn , d) = min{δ∗i (Ppn−1 , d), δi(pn, d)} ∀i ∈ {0, . . . , k − 1} ∧ ∀n > 0 (5.9)

Herein Pu represents the path P until u has been reached, it consists of the vertices that a packet
arriving at u has traversed. p0 is the source vertex of the path P . Each of the minimum distances
of the k embeddings is thus represented by an element δ∗i (Pu, d). The LBFR system will route a
packet along a distance-decreasing path for each Ti individually but with a restriction that κ has
to decrease strictly monotonically along the routing path:

κ(Ppn , d) < κ(Ppn−1 , d) < . . . < κ(p0, d) (5.10)

The LBFR forwarding decision making process is depicted in Algorithm 5.1. Herein the compu-

CHAPTER 5. FOREST ROUTING 60

tation of the recursive function δ∗ is done based on the δ∗-value of the previous node, which has
been added to the packet header. By doing this, κ can be easily computed at every node. All
neighbouring nodes whose κ-function value is strictly lower than the node u making the forward-
ing decision are added to a set, denoted as S(u). A packet forwarded to any element of S(u) will
eventually arrive at its destination. In order to balance traffic on each node’s outgoing links, the
node v ∈ S(u) is chosen for which (u, v) ∈ I(u) has the lowest load. Because LBFR focuses solely
on link load balancing, its link load balancing behaviour should improve quickly as k increases. As
a side-effect, the stretch might become very large because the distance gain at every routing hop
is sacrificed in favour of load balancing. The effect of using different k-values on the stretch and
the load balancing behaviour of LBFR is analysed in Section 6.2 of the results chapter.

Algorithm 5.1: Load Balanced Forest Routing (LBFR): forwarding decision making proce-
dure
input : vertex v ∈ V of the graph G = (V,E) at which a forwarding decision needs to be

taken for a packet packet received from vertex u ∈ V ; v knows its neighbours
N(v) ⊆ V and the current load of its currently incident edges I(v) ⊆ E; all vertices
have been embedded into Ti for 0 ≤ i < k.

output: packet is forwarded to a vertex n ∈ N(v)
1 δ∗(u) (k-dimensional array) ← packet.getMinDistances()
2 δ∗(v), S(v)← ∅
3 κ(v)← 0
4 foreach i ∈ {0, 1, . . . , k − 1} do // for all embeddings
5 δ∗i (v)← min{δ∗i (u), δi(u, d)}
6 κ(v)← κ(v) + δ∗i (v)
7 end
8 foreach i ∈ {0, 1, . . . , k − 1} do // for all embeddings
9 foreach w ∈ N(v) do

10 if κ(w) < κ(v) then // the κ(w) calculation based on δ∗(v) is not shown
11 S(v) ← S(v) ∪ {w}
12 end
13 end
14 end
15 minLoad ← +∞
16 R(v)← ∅
17 foreach w ∈ S(v) do
18 if L(v, w) < minLoad then // load between on link (u,w)
19 R(v)← ∅
20 minLoad ← L(v, w)
21 R(v)← R(v) ∪ w
22 else if L(v, w) = minLoad then
23 R(v)← R(v) ∪ w
24 end
25 end
26 n← random element from R(v)
27 packet.setMinDistances(δ∗(v)) and send packet to n

In order to guarantee delivery for every source-destination pair the following theorems are intro-
duced.

CHAPTER 5. FOREST ROUTING 61

Theorem 5.1. Let G = (V,E) be a graph with k embeddings Ti for 0 ≤ i < k in the metric space
(T, δ). Let d be the destination node, then for every path P ∈ P of a graph with v ∈ V as last
element and where d has not been reached yet, thus d 6∈ P , the set of neighbours S(v) for which
the value of the κ-function strictly decreases is not empty.

Proof. Assume a packet arriving at a vertex v by following a path P = 〈. . . , u, v〉. Assume this
packet has to be forwarded to a destination vertex d and that d 6∈ P . This means that, making
use of the notations in Algorithm 5.1, S(u) 6= ∅. Therefore κ(v) < κ(u). Because of the definition
of κ as the sum defined by Eq. (5.7): ∃i ∈ {0, 1, . . . , k − 1} : δ∗i (Pv, d) < δ∗i (Pu, d). Combining the
definition of δ∗ in Eq. (5.9) with the definition of the min-function gives δi(v, d) < δ∗i (Pu, d) and
δ∗i (Pu, d) ≤ δi(u, d). Therefore, again because of Eq. (5.9), δ∗i (Pv, d) = δi(v, d). Also, δi(v, d) <
δi(u, d) which means that the distance towards d in embedding Ti has decreased. Because Ti is a
greedy embedding and Definition 2.8: ∃w ∈ N(v) : δi(w, d) < δi(v, d). Thus because of Eq. (5.9)
δ∗i (P_v w, d) = δ(w, d) and therefore δ∗i (P_v w, d) < δ∗i (Pv, d). Combining this with Eq. (5.7) leads
to κ(P_v w, d) < κ(Pv, d) based on the fact that δ∗i never increases along a path. From this follows:
S(v) 6= ∅. As such, any element from S(v) is a suitable next vertex to which the packet can be
forwarded without violating the LBFR restrictions.
This theorem also holds for a source vertex s. Because of Eq. (5.8), every value δ∗i is equal to the
distance δi. Therefore any vertex for which the distance towards the destination decreases (and
such a vertex exists due to every Ti being a greedy embedding) leads to a lower κ-value. Thus at
the source vertex S(s) 6= ∅.

Theorem 5.2. The path followed by a packet routed on a graph G = (V,E) by LBFR is never a
cycle.

Proof. Assume a destination vertex d and a packet travelled along P = 〈. . . , u, v, . . . , w〉 arriving
at w ∈ N(v). When arriving at v for the first time, δ∗i (Pv, d) ≤ δi(v, d) because of Eq. (5.9). Since
the values of δ∗ can never increase due to the definition of the min-function, upon calculating the κ-
function value for the second time for vertex v (this time from w): 6 ∃i ∈ {0, 1, . . . , k−1} : δi(v, d) <
δ∗i (Pw, d) because if there would exists such an i then δ∗ would already have been updated to this
value the first time the packet has arrived at v. Thus the κ-value cannot decrease the second time
v is encountered. Therefore no vertex can appear twice along the path followed by a packet routed
by LBFR which enforces κ to be strictly monotonically decreasing along a routing path.

Theorem 5.3. A packet routed according to the principles of LBFR on a graph G = (V,E) will
arrive at its destination.

Proof. Because κ is strictly monotonically decreasing and the initial κ-value at the source vertex is
finite (assuming |V | is finite), it will become 0 after a finite number of vertices have been traversed
unless, it would have been routed along a cycle or unless it would have encountered a void. These
two last cases are impossible because of Theorem 5.1 and Theorem 5.2. When κ(Pv, d) = 0 holds
for a vertex v ∈ V and a destination d, this means that ∀i ∈ {0, 1, . . . , k−1} : δi(v, d) = 0. Because
of property 1 in Definition 5.1 which defines a metric space, v = d. Therefore the destination has
been reached at vertex v.

CHAPTER 5. FOREST ROUTING 62

Because of the previous theorems, the LBFR scheme is always able to route a packet to its desti-
nation without encountering cycles or voids. This is important because routing on a network such
as the Internet backbone has to be guaranteed for all source-destination pairs.

Example To illustrate the LBFR system an example is given for a multi-embedding consisting
of three embeddings, thus k = 3, which is depicted in Figure 5.3.10 This is the equivalent of saying
that there is a single embedding into T3. Thus every vertex has three sets of coordinates, one for
each embedding. Assume a source node s and a destination node d for which δ(s, d) = (3, 5, 7).
This means that the distance δ is 3 in embedding T0, 5 in embedding T1 and 7 in embedding T2.
When routing naively the following scenario can occur:

• δ(n1, d) = (3, 4, 7), decide to route from s to n1 in embedding T1

• δ(n2, d) = (3, 6, 6), decide to route from n1 to n2 in embedding T2

• δ(n3, d) = (3, 5, 7), decide to route from n2 to n3 in embedding T1

• δ(n1, d) = (3, 4, 7), decide to route from n3 to n1 in embedding T1

s

n3

n1 n2
d

Figure 5.3: Naive routing with multiple embeddings

Here a cycle has been introduced because although the packet is routed greedily in each embedding
individually, this does not hold for their aggregation. When routing intelligently with the κ-
function restriction the following happens (see Figure 5.4): δ∗(〈s〉, d) = δ(s, d) = (3, 5, 7), thus
κ(〈s〉, d) = 3 + 5 + 7 = 15.

• δ(n1, d) = (3, 4, 7), s checks n1 to route on T1, thus

δ∗(〈s, n1〉, d) = (min{3, 3},min{5, 4},min{7, 7}) = (3, 4, 7)

which means that κ(〈s, n1〉, d) = 3 + 4 + 7 = 14. Because κ(〈s, n1〉, d) < κ(〈s〉, d) the next
hop n1 is accepted.

• δ(n2, d) = (3, 6, 6), n1 checks n2 to route on T2, thus

δ∗(〈s, n1, n2〉, d) = (min{3, 3},min{4, 6},min{7, 6}) = (3, 4, 6)

which means that κ(〈s, n1, n2〉, d) = 3 + 4 + 6 = 13. Because κ(〈s, n1, n2〉, d) < κ(〈s, n1〉, d)
the next hop n2 is accepted.

10Note that the network is simply for illustration purposes: the depicted network might not allow an embedding
as it is presented here.

CHAPTER 5. FOREST ROUTING 63

• δ(n3, d) = (3, 5, 7), n2 checks n3 to route on T1, thus

δ∗(〈s, n1, n2, n3〉, d) = (min{3, 3},min{4, 5},min{6, 7}) = (3, 4, 6)

which means that κ(〈s, n1, n2, n3〉, d) = 3 + 4 + 6 = 13. Because κ(〈s, n1, n2, n3〉, d) =
κ(〈s, n1, n2〉, d) the next node n3 is rejected as a potential next hop.

• a node n′3 with δ(n′3, d) = (2, 5, 7) would be accepted by n2 because

δ∗(〈s, n1, n2, n
′
3〉, d) = (min{3, 2},min{4, 5},min{6, 7}) = (2, 4, 6)

which means that κ(〈s, n1, n2, n
′
3〉, d) = 2 + 4 + 6 = 12 which is lower than κ(〈s, n1, n2〉, d).

s

n3

n1 n2

n′3

d

Figure 5.4: LBFR avoids the introduction of routing cycles

5.3.1.3 Hybrid Forest Routing (HFR)

As the results indicate (see Section 6.3) the stretch may be very large when striving for active link
load balancing. In terms of stretch and load balancing, GFR and LBFR are two opposites: GFR
attains low stretch but has no load balancing while LBFR achieves high load balancing but the
stretch becomes unbearably large. To combine the best of both worlds a new mechanism has been
developed called Hybrid Forest Routing (HFR). It makes a trade-off between increased stretch and
improved load balancing by employing a cost function that combines current link load information
with the distance to the destination. This cost function C : V 3 → R is defined as

C(u, n, d) = min
0≤i<k

{
γ · L̂(u, n)α + (1− γ) · δi(n, d)α

}
(5.11)

This equation selects the minimal cost over all embeddings Ti. These individual cost function
consist of a load balancing term L̂(u, n) defined by Eq. (5.17). These terms can be tuned by the
factor γ and the exponent α. The second term describes the distance in embedding Ti. It can be
tuned by the factor (1− γ) and the exponent α. The factor γ is introduced to shift between load
balancing focus and distance focus while α is introduced to obtain non-linear behaviour of the cost
terms. This means that difference between the load and the distance results in a higher cost. For
example, say that α = 1, γ = 0.5 and L̂(u, x) = 2 with δi(x, d) = 2. This leads to a cost 2. For
another node y the following could be true: L̂(u, y) = 3 with δi(y, d) = 1, which also leads to a
cost 2. However if we want to avoid that an imperfect load balancing is compensated by a lower
distance (or the opposite) the following parameter could be used: α = 2, γ = 0.5. Now node x
would result in a cost 4 while node y would result in a cost 5, which means that x is now preferred.

CHAPTER 5. FOREST ROUTING 64

In Eq. (5.16) the right-hand side can be rewritten as follows

min
0≤i<k

{
γ · L̂(u, n)α + (1− γ) · δi(n, d)α

}
(5.12)

= γ · L̂(u, n)α + min
0≤i<k

{(1− γ) · δi(n, d)α} (5.13)

= γ · L̂(u, n)α + (1− γ) · min
0≤i<k

{δi(n, d)}α (5.14)

= γ · L̂(u, n)α + (1− γ) · ε(n, d)α (5.15)

which leads to
C(u, n, d) = γ · L̂(u, n)α + (1− γ) · ε(n, d)α (5.16)

for n ∈ N(u) and ε defined by Eq. (5.6). The function L̂(u, v) represents the normalized traffic
load of the edge between u and v.11 This is the traffic load of the link (u, v) divided by the average
load of the node’s incident links I(u). This normalized load is defined by

L̂(u, n) = dG(u) · L(u, n)∑
v∈N(u)

L(u, v)
(5.17)

The factor γ ∈ [0, 1] is a weight factor to scale between greedy and load balanced routing. The
power α ∈]0,+∞[allows for non-linear tuning. As can be seen, HFR also uses the relaxed-metric
space (Tk, ε). However, because the cost function is an extension of the ε-function, it does not
employ greedy routing. It is not even necessarily distance-decreasing in ε. To guarantee packet
delivery, the κ-function from LBFR is used to steer packets towards their destination. Hence, it
is called a hybrid mechanism. It is able to attain strong load balancing while keeping the stretch
down, which is shown in Section 6.3. GFR and LBFR can now be seen as two special instances of
HFR on the opposite side of the spectrum. When γ = 1 the LBFR mechanism is recreated. When
γ = 0 the HFR reverts to GFR. The HFR forwarding procedure can be created when replacing
L(u,w) in Algorithm 5.1 on lines 18, 20 and 22, with C(v, w, d) as defined in Eq. (5.16). The effect
of using different parameter values for γ and α on the stretch and the load balancing behaviour of
HFR is analysed in Section 6.3 of the results chapter.

5.3.2 Extension to an m-hop neighbourhood

A way to generate better paths in terms of load balancing and stretch, is by allowing nodes
to use more network state information. This can be done by interchanging the default 1-hop
neighbourhood with an m-hop neighbourhood. Now not only information about a node’s incident
edges I(u) is used, but also the information about the links incident to its neighbours I (N(u)), and
recursively to their neighbours. The m-hop neighbourhood of a node u is denoted as Nm(u). A
larger neighbourhood may improve routing quality in terms of stretch or load balancing, however
this comes at a cost. A simple example of what the effect can be on load balancing by using an
m-hop neighbourhood can be witnessed in Figure 5.5.

The trade-off made here is having more potentially useful information in favour of a higher state
11The representation of the load may be arbitrarily chosen but should be consistent for all network links.

CHAPTER 5. FOREST ROUTING 65

requirement in every node, and a higher computational complexity of the forwarding decision
making. A forwarding node u will now not only check the state of the links I(u) but all possible
paths within N1(u), N2(u), . . . , Nm(u). For all these possible paths the average normalized link
load value will be calculated and used in Eq. (5.16). This is combined with the distance to the
destination of the final node along these investigated paths, increased with the path length. As
such m-hop paths of different size can be compared.

a

b e

f

c

g

h15

7

7

5

Figure 5.5: Path calculation possibilities for m-hop neighbourhoods, in this case m = 2. By conveying
a larger neighbourhood, better paths become available. When optimizing load-balancing, a
will now send the packet to b instead of c to arrive at h because the average path load for
〈a, c, h〉 is 10 while for 〈a, b, h〉 this is only 7.

When a path P has been selected as being the most cost-effective path within the neighbourhood
Nm(u), the current node u will simply forward the packet to the first node of P , which is a direct
neighbour of u. This receiving node will then again calculate an m-hop neighbourhood, which
ensures that a node always uses live load information. Using Figure 5.5 this means that a will
calculate an m-hop neighbourhood in which it concludes that 〈b, h〉 is the most cost-effective path.
Then it will forward the packet to b, which will again calculate an m-hop neighbourhood. Another
possible implementation would be to encode the forwarding path P in the packet header. By doing
this only one router decides which path to follow, every m hops. Using Figure 5.5 this means that
a will calculate the path P = 〈b, h〉 which will be encoded in the packet header. When this packet
is received at b, it will simply forward it to h without any cost calculations. However, because this
path is constructed at node u, by the time the packet reaches the last node of P , the traffic load
distribution might have altered severely. The implementation in this thesis is based on the former
method (calculating the m-hop neighbourhood at every node).

If the average degree of G = (V,E) is dG(V), then using an m-hop neighbourhood requires a
state complexity of O (dG(V)m), meaning that it scales exponentially with the neighbourhood
size. When m is increased until it matches the diameter of the network, the paths generated
will be shortest path when using a greedy routing mechanism. This also means that the state
requirement will be comparable to the state requirement of routing tables. Nodes have to commu-
nicate the necessary information by sending status updates periodically. So not only storage and
computational resources are sacrificed, but also link bandwidth.

CHAPTER 5. FOREST ROUTING 66

A problem with using a fixed m-hop neighbourhood is that high-degree nodes might get overloaded
with information. This can happen especially in scale-free networks where a small number of nodes
have a very high degree compared to the rest. Simply decreasing the factor m would punish the
large number of low-degree nodes and is therefore no option. This is why a cap on the number of
elements inspected in the m-hop neighbourhood has been introduced. The nodes are investigated
(their cost function is calculated) in order of increasing m and increasing degree to cover as many
different paths as possible. Thus first nodes in N1(u) are investigated, then in N2(u) and so on
in a lowest-degree first order. It has to be noted all elements in N1(u) will be investigated, even
if |N1(u)| is larger than the cap. Therefore the cap only limits nodes in a neighbourhood Nm(u)
with m > 1.

 0

 1000

 2000

 3000

 4000

 5000

1 2 3

n
o
d
e
 d

is
ta

n
c
e

s
 c

a
lc

u
la

te
d

m

(a) Boxplot of neighbourhood size for varying m-values
on SF8k.

 0

 100

 200

 300

 400

 500

+∞ 300

n
o
d
e
 d

is
ta

n
c
e

s
 c

a
lc

u
la

te
d

cap

(b) Boxplot of neighbourhood size for m = 2 and two
different cap values on SF500.

Figure 5.6: Effect of an m-hop neighbourhood with and without cap on the state and computational
complexity.

In Figure 5.6(a) the number of cost function calculations is set out in function of m. It can be
seen that the number of potential neighbours increases very fast in function of the neighbourhood
size m due to the exponential complexity O (dG(V)m). In Figure 5.6(b) the effect of capping the
number nodes is shown. In this figure an arbitrary cap of 300 is set simply to show the capping
effect. Say that a node has 500 neighbours within its m hop neighbourhood, then it will now only
calculate the cost function (or distance) for 300 of them. The figure indicates that this only affects
a minority of nodes in scale-free graphs because the first, second (median) and third quartile of
the boxplot remain the same. This means that the number of cost functions calculated by a node
is only limited by the cap for nodes with a high degree. This results in a good trade-off where
high-degree nodes do not get overloaded with information while low-degree nodes can experience
the information gain of using a whole m-hop neighbourhood. The effect of using different m-values
in combination with different caps on the stretch and the load balancing behaviour is analysed in
Section 6.3.3 of the results chapter.

5.3.3 Recapitulation

The use of multiple embeddings has been researched which forms the foundation of the Hybrid
Forest Routing (HFR) scheme. This routing scheme has two other variants called Greedy Forest

CHAPTER 5. FOREST ROUTING 67

Routing (GFR) and Load Balanced Forest Routing (LBFR) which are special cases of HFR. The
routing schemes establish passive routing behaviour through the use of multiple embeddings. GFR
focuses on attaining a low stretch but has no form of active load balancing while LBFR focuses on
active load balancing but neglects the stretch. HFR is a combination of these two mechanisms and
seeks a trade-off between load balancing and stretch. Furthermore the use of larger neighbourhood
sizes has been investigated, which can be applied to all three routing mechanisms. Using a larger
neighbourhood size should be favourable in terms of load balancing and stretch, but it also increases
the node state requirement, the computational complexity of the forwarding decision making and
the control traffic bandwidth usage. At this point the graph embedding procedure itself is still
unexplored, therefore different coordinate assignment procedures will be investigated in the next
section.

5.4 Graph embedding procedure

The FR systems make use of a graph embedding into Tk. How this embedding is constructed will
be explained in this section. This embedding is based on multiple spanning-tree based embeddings
into T. Therefore first k different spanning trees Ti are built. While this tree construction process
is ongoing, coordinates are assigned to each network node. The embedding procedures in this work
consist of two phases:

1. root nodes of the k different spanning trees Ti are elected.

2. the root nodes will initiate the tree forming procedure. While every tree Ti is formed,
coordinates are also assigned. This process of forming a tree and generating coordinates will
therefore be denoted as the graph embedding procedure.

The next section explains the root election procedure. Afterwards the graph embedding procedure
itself is explained.

5.4.1 Root node election

The procedure for acquiring the k greedy graph embeddings Ti starts with the construction of k
different spanning trees Ti. This construction begins with the election of a root vertex r(i) for each
tree Ti. As the foundation of this election procedure is based on Section 4.1.1, the same notations
will be employed. In this work multiple root election variants were used:

• highest-key node election (HKE): A(0) = K(E). As node keys are arbitrarily assigned, this
will be simulated in practice as a random root election procedure.

• highest-degree node election (HDE): A(0) = dG(V). Electing the highest degree node as root
may lead to a tree that corresponds to the hierarchical structure of a scale-free network.

• anchor node election (AE): the SALT anchor nodes are elected to act as root nodes as defined
in Section 4.1.2.

These settings are used in the election procedure described in Section 4.1.1. To obtain k different
root nodes, the election procedure is run k times in parallel. The effect of using these different
election variants will be investigated in Section 6.3.4 of the results chapter.

CHAPTER 5. FOREST ROUTING 68

5.4.2 Graph embedding procedure

After having elected a set of k root nodes r(i), the spanning trees Ti can be constructed along
with the corresponding greedy graph embeddings Ti. In what follows the construction of a single
embedding T will be explained, multiple embeddings can be seen as a parallel extension. The
embedding procedure itself is exactly the same as explained in Section 5.2.1. The difference lies
within the way the trees are formed. First, the root node r is assigned the coordinate (0). Next
it will send its coordinates to its neighbours N1(r).12 Furthermore each recipient is assigned a
unique number by the sender. The receiving nodes will then compute their own coordinates and
send an assignment message to their neighbours N2(r). In turn these will recursively send it to all
other nodes Nj(r) (if they accept the coordinates). When a node which already has coordinates
assigned to it receives a new coordinate assignment message, it may react in different fashions.
These fashions are called different tree growing modes:

• first mode (FM): discard the message in all cases.

• breadth-first mode (BFM): override the previous coordinate tuple only if the newly received
one leads to a lower coordinate tuple length. This leads to a tree of minimal depth.

• redundant mode (RM): previous coordinates may be overridden only when their associated
cost function value is lower. This cost function is based on the coordinate tuple lengths and
the overlap of the spanning trees.

• breadth-first redundant mode (BFRM): a hybrid mode combining the breadth-first mode
(BFM) with the redundant mode (RM).

Algorithm 5.2: Tree growing: first mode (FM)
input : vertex u has sent its coordinates to its neighbours; current vertex v ∈ N(u) is

listening for packet receipt
output: vertex v has coordinates assigned according to embedding T in T

1 receive incoming coordinate packet of node u with coordinates u and a child number cu
2 look up own coordinates v corresponding to embedding T
3 if v = ∅ then
4 cu ← child number cu stored in packet
5 calculate own coordinates v← u_{cu}
6 foreach n ∈ N(v) do
7 send(packet containing v and neighbour number cv) to n
8 end
9 else

10 drop packet
11 end

Embedding the graph (shown in Algorithm 5.2) in first mode (FM) is a baseline method to compare
the other assignment procedures with. It is very easy to construct and its termination can easily
be proven. Furthermore it is naturally cycle-free: no cycle avoidance mechanism is required. All
nodes get assigned a parent in the tree (except the root) which is never altered. Once all nodes

12Remind that Ni(u) represents the i-th hop neighbours of u.

CHAPTER 5. FOREST ROUTING 69

have been assigned coordinates by their parent, the embedding procedure terminates. The major
downside of this method is that the tree may be very unbalanced. As a result, very long paths
between the root and leaf nodes are possible, leading to long coordinates.

Algorithm 5.3: Tree growing: breadth-first mode (BFM)
input : vertex u has sent its coordinates to its neighbours; current vertex v ∈ N(u) is

listening for packet receipt
output: vertex v has coordinates assigned according to embedding T in T

1 receive incoming packet of node u with coordinates u, a child number cu and key K(u)
2 look up own coordinates v and parent key K(p) corresponding to embedding T
3 if v = ∅ ∨ K(u) = K(p) ∨ (K(u) 6= K(p) ∧ (|v| < |u| − 1)) then
4 cu ← child number cu stored in packet
5 calculate own coordinates v← u_{cu}
6 update own parent p← u
7 foreach n ∈ N(v) do
8 send(packet containing v and neighbour number cv) to n
9 end

10 else
11 drop packet
12 end

The breadth-first mode (BFM) is described in Algorithm 5.3. As can be seen on line 3, coordinates
are only overridden when the coordinate tuple resulting from the received set has a lower length
than the current tuple, or its parent node has acquired a new set of coordinates. In the latter
case, the child node should be updated accordingly. By doing so, a tree of minimal depth is built
rooted at r. An advantage of using BFM is that the introduction of cycles is impossible. It also
has a fixed upper embedding procedure time. The downside is that the tree redundancy is rather
high. With tree redundancy the overlap of different spanning trees of the same network is meant.
For example when two trees Ti = (V,E′) and Tj = (V,E′′) have a maximal redundancy, they
completely overlap, which means that E′ = E′′. Because of this, there is no advantage in using
them both. However in case their sets of links have a low overlap (low tree redundancy), the set
E′ ∩ E′′ is small and as such more routing paths are available.

The high tree redundancy of the two first modes has two disadvantageous effects:

1. low fault-tolerance: if a link fails which happens to be the link between parent and child for
a large fraction of the trees, this will likely cause routing voids.

2. little shortcuts are taken: it is beneficial to let shortcut in a embedding Ti be the parent-child
link in embedding Tj . The reason for this is that a packet is generally routed to its parent
when no shortcut is available (or when its destination is an ancestor). This contributes to
the root hotspot effect which we want to avoid.

To bypass these issues, a third mode has been developed called redundant mode (RM). Now
emphasis is on minimal tree redundancy, attaining maximal tree spreading. This is done by
making sure that every link is an edge in approximately the same number of trees. Attaining this

CHAPTER 5. FOREST ROUTING 70

requires a metric to measure the amount of tree redundancy of the spanning trees inducing the
different embeddings. Every edge e ∈ E is part of a number of sets E′i for a number of different
trees Ti = (V,E′i). If minimal redundancy is desired, the goal is to make this number more or
less equal for every edge in E of G = (V,E). Therefore the metric τ is defined by the following
definition.

Definition 5.2. Assume k spanning trees. Denote the number of different sets E′i, corresponding
to Ti = (V,E′i) with 0 ≤ i < k, that an edge e ∈ E in a graph G = (V,E), belongs to as n. The
amount of tree redundancy, termed the τ -ratio, is defined as the standard deviation σ(n) divided

by the average n̄ over all e ∈ E. This can be formulated as τ = σ(n)
n̄

.

A high τ -value indicates that the trees are spread evenly over the network while a low τ -value
indicates that there is a huge difference in the number of spanning trees a link of the network is
part of. Also note that τ ≥ 0. To decrease the tree redundancy while constructing the embedding,
a cost function fi : V 3 → R was defined for each embedding Ti in the system:

fi(u, p, p′) = ηai(u) + βbi(u) + χci(u, p, p′) (5.18)

with η, β, χ ∈ R adjustable parameters with default values η = 1, β = 1
2 and χ = 3

2 . ai, bi and ci
are cost terms defined as

ai(u) = |u′| − |u| (5.19)

bi(u) =

0 if ai(u) ≤ 0

|u′| − |u∗| if ai(u) > 0
(5.20)

ci(u, p, p′) = |Ψ(u, p′)− Ψ̄(u) + 1|+ |Ψ(u, p)− Ψ̄(u)− 1|

−
(
|Ψ(u, p′)− Ψ̄(u)|+ |Ψ(u, p)− Ψ̄(u)|

) (5.21)

with u ∈ V also representing the current coordinates for embedding Ti; u′ the new coordinates for
embedding Ti; u∗ the coordinates of the lowest length encountered so far for embedding Ti; Ψ(x, y)
represents the number of trees Ti that are making use of the edge (x, y) ∈ E; Ψ̄(x) is the average
of Ψ(x, y) ∀y ∈ N(x); p is the current parent of u and p′ the potentially new parent.
Thus ai(u) indicates the decrease in length of the new coordinates compared to the current co-
ordinates of u. bi(u) represents the decrease in length of the coordinates under consideration for
node u when comparing them to the coordinates of the lowest length that have been assigned (and
possible overridden) so far for u. ci(u, p, p′) describes how much accepting the new parent will
equalise the number of trees each link e ∈ I(u) is part of. In this cost term, |Ψ(u, p′)− Ψ̄(u) + 1|
describes the offset of the number of trees link (u, p′) is part of versus the average of this value,
denoted as Ψ̄(u), over all links in I(u), when p′ is chosen as the new parent of u. To this is added
|Ψ(u, p)− Ψ̄(u)− 1| which describes the offset of number of trees link (u, p) is part of when p is no
longer a parent of u, versus the average over the links I(u), denoted as Ψ̄(u). The sum of these
two offsets is compared to the sum of the offsets without the replacement of the parent, which
is
(
|Ψ(u, p′)− Ψ̄(u)|+ |Ψ(u, p)− Ψ̄(u)|

)
. Therefore ci describes whether changing the parent will

reduce the variance in the total number of trees each links of I(u) is part of. Also note that
ci(u, p, p′) is bounded by −2 ≤ ci(u, p, p′) ≤ 2.

CHAPTER 5. FOREST ROUTING 71

Algorithm 5.4: Tree growing: redundant mode (RM)
input : vertex u has sent its coordinates to its neighbours; current vertex v ∈ N(u) is

listening for packet receipt
output: vertex v has coordinates assigned according to embedding T in T

1 receive incoming packet packet of node u along with its coordinates u, a child number cu
and key K(u)

2 look up own coordinates v and parent key K(p) corresponding to embedding T
3 if v = ∅ then
4 go to line 11
5 else if K(u) = K(p) ∨ (K(u) 6= K(p) ∧ f ′i(v, p, u) < 0) then
6 if K(v) ∈ P ∧ K(u) 6= K(p) then
7 cycle avoided, drop packet
8 else if K(v) ∈ P ∧ K(u) = K(p) then
9 cycle detected because parent update message received, resolve cycle

10 else
11 cu ← child number cu stored in packet
12 calculate own coordinates v← u_{cu}
13 update own parent p← u
14 record own key in packet in sequence of traversed nodes: P ← P_K(v)
15 foreach n ∈ N(v) do
16 send(packet containing v and neighbour number cv) to n
17 end
18 end
19 else
20 drop packet
21 end

The graph embedding procedure in redundant mode (RM) is described in Algorithm 5.4. When
growing a tree in RM, precautions have to be taken in order to avoid the introduction of cycles,
especially when using low α-values in Eq. (5.18) as nodes will then frequently switch parents. The
fact that now longer coordinates may override shorter ones is the main reason for the potential
introduction of cycles. This happens when an ancestor node accepts new coordinates from one
of its descendants. As a result greedy forwarding can no longer be guaranteed as the embedding
Ti may no longer be greedy. A solution at first glance is to check whether a receiving node is an
ancestor of the sending node by checking if |φ(u′, u)| 6= |u| holds. But even then it is still possible
to generate cycles as explained in Figure 5.7. To counter this, every coordinate assignment packet
also holds information about the current path P up to the root. The key of every vertex v ∈ P
is recorded. If a node u receives a coordinate assignment message, it will first check whether it is
part of P by examining if its own key is present in this set of recorded keys. Only when u 6∈ P will
it consider accepting the new coordinates. This mechanism is called cycle avoidance.

However, even with the cycle avoidance active, it is still possible to introduce cycles in certain
cases that are hard to avoid due to the system’s distributed nature. Therefore, a cycle resolution
procedure has been implemented. This can be seen in Algorithm 5.4 at line 8. When a node receives
a coordinate assignment packet from its parent, it should normally accept these new coordinates.
However, when this packet already has its own key in the P field, a cycle was introduced. In
node u the P field will look like (. . . , u, a, b, . . . , c). Therefore it knows that the cycle is the path

CHAPTER 5. FOREST ROUTING 72

y

(y)
a

(a)

c

(a, c)

g

(?, c, g)

x

(?, c, g, x)

h

(?, c, h)

(a) The tree (a, c, g, h, x) exists after a
has assigned coordinates to c. This leads
to updating g, h and x. Hereafter, the
parent a of c is replaced by y because of
a decreasing cost.

y

(y)
a

(a)

c

(y, c)

g

(a, c, g)

x

(a, c, g, x)

h

(a, c, h)

(b) Node c updates its coordinates
according to its new parent y. The
tree now becomes (y, c, g, h, x). At
the same time the update message
of the old coordinates of c reaches
x.

y

(y)
a

(a)

c

(y, c)

g

(a, c, g)

x

(a, c, g, x)

h

(a, c, h)

(c) Node x sends the updates to all of its
neighbours, which includes c. It does not
notice that c is an ancestor because the
coordinates of c have already been up-
dated according to its new parent y.

y

(y)
a

(a)

c

(a, c, g, x, c)

g

(a, c, g)

x

(a, c, g, x)

h

(a, c, h)

(d) Node c accepts the new coordinates
of x because of a decreasing cost function.
However, this was still based on the non-
updated coordinates and thus a cycle is
formed, corrupting the tree.

Figure 5.7: Cycle introduction by faulty coordinate updates which results in an endless loop of updates.

〈u, a, b, . . . , c, u〉. It will simply send on the coordinate assignment packet to its children in order
to notify those children which are part of the cycle. Every time a cycle is detected, the node will
search a neighbour which is not part of the cycle and make it its parent. This is done by querying
a new parent p and asking for its coordinates along with a new child number cp. After the packet
has traversed all nodes of the cycle, these will all have had the opportunity to switch parent, hence
the cycle is resolved.

The advantage of generating an embedding in RM is that the tree redundancy τ is very low.
However it is very hard to give an estimated upper bound on the embedding procedure time due

CHAPTER 5. FOREST ROUTING 73

to the complex interactions of the cycle resolution and avoidance mechanism. Also the coordinates
will be larger than when building a tree of minimal depth. Therefore a hybrid mechanism was
established by combining the BFM with the RM, called breadth-first redundant mode (BFRM).
Now a tree of minimal depth is combined with a cost function to minimize τ . This basically
comes down to assigning parameter values η > 2 and β = 0 in Eq. (5.18). This is then applied to
Algorithm 5.3 by altering the check (|u| < |v| − 1) at line 3 to (f ′i(v, p, u) < 0) based on Eq. (5.18).
Because of the breadth-first behaviour, no cycle avoidance or resolution is required, which greatly
diminishes the complexity of the embedding procedure. This is a result of the fact that a node can
never increase its coordinate tuple length. What the exact trade-off of the BFRM is can be seen
in the results chapter.

5.4.3 Recapitulation

At this point three variants of the Forest Routing (FR) system have been proposed, which incor-
porate load balancing by using multiple embeddings, cost functions or larger neighbourhood sizes
while focusing on a low stretch. In the previous sections the graph embedding procedure itself
was investigated. Four schemes which can be combined with three root election mechanisms were
proposed. How the tree redundancy τ resulting from the different embedding procedures affect
the stretch, the load balancing behaviour and the fault-tolerance will be shown in Section 6.3.4 of
the results chapter. Next, network dynamics will be investigated. FR will be altered to be able to
cope with non-uniform link bandwidth, a changing network topology and failure scenarios.

5.5 Network dynamics

5.5.1 Non-uniform link capacities

The load balancing mechanisms explained in the previous sections try to spread traffic evenly over
all network links by allowing each node to balance traffic on its outgoing links. An underlying
assumption made here is that every link has an equal traffic capacity, however in real networks
this is not necessarily the case. To avoid this limitation, a new load function L̂(u, v) is introduced
to replace the normalized average load in Eq. (5.16). This new function is defined as

L̂(u, v) = f(u, v) +

0 : f(u, v) < ω

(1− f(u, v))−1 : f(u, v) ≥ ω
(5.22)

f(u, v) = L(u, v)
L+(u, v) (5.23)

with L+(u, v) the capacity of the link (u, v). The parameter ω ∈ [0, 1] determines the traffic cut-off
point. When the load-versus-capacity fraction f crosses ω, L̂(u, v) is augmented with a non-linear
term to prevent link congestion. Eq. (5.22) thus tries to attain an equilibrium such that every link
is evenly filled. For example when ω = 0.9, the system attempts to keep the link load beneath 90%
to avoid congestion. Because different link capacity values can be handled, the congestion-aware
load balancing (CALB) mechanism can be viewed as a generalization of the default load balancing
(LB) mechanism. How using CALB affects the behaviour of FR will be investigated in Section 6.3.5

CHAPTER 5. FOREST ROUTING 74

of the results chapter.

5.5.2 Fault-tolerance

In this section the fault-tolerance of the FR mechanism is investigated, which is its capability of
handling node or link failures. This is of utmost important as the Internet will always be subject
to failures due to its vast size. Link failures are defined as any a link state in which the link is
no longer capable of transmitting data between its endpoints. A node failure is defined as the
inability of a node to process packets correctly. Starting by looking at failures from a theoretical
point of view, first geometric routing with a single embedding (k = 1) is studied. Herein the
network is modelled by a graph G = (V,E) with an embedding T into T, induced by a spanning
tree T = (V,E′) with E′ ⊆ E. Within this model, two types of link failures can be distinguished:

1. A link e ∈ E fails for which e 6∈ E′ holds, therefore T does not become disconnected.

2. A link e ∈ E fails for which e ∈ E′ holds, as such T becomes disconnected.

The first type of link failures does not critically affect routing in a negative way. Packet delivery
is still guaranteed because e is a shortcut link (see Figure 5.8(a)), although the stretch and the
load balancing behaviour may deteriorate. In contrast, the second kind of failure is critical. Now
packet delivery can be obstructed for certain source-destination pairs. This is due to the underlying
embedding potentially losing its greedy property (see Figure 5.8(b)). On the other hand, node
failures can also be divided into two classes:

1. A node v ∈ V fails which is a leaf node of T , thus T does not become disconnected.

2. A node v ∈ V fails which is not a leaf node of T , therefore T becomes disconnected.

In case a leaf node fails, no harm is done. Of course this prevents the node from becoming the
source or destination of any path, but this is a trivial case. The failed node will never be a part of
the sole path between two other nodes. Non-leaf nodes can however be critical transit nodes for
the network traffic. In case no shortcut exists between two disjoint sub-trees, all traffic has to be
routed along their common ancestor node a. Therefore when a fails, all traffic between the two
trees will encounter a void at a neighbour of a. However, due to the likelihood of the existence of
shortcuts, negative effects of such node failures are diminished, but no guarantees can be made.

By expanding to an embedding into the k-dimensional space Tk with k > 1, routing redundancy
is introduced. This makes routing more fault-tolerant, as will be experimentally verified in the
results chapter. A link or node failure must now disconnect all of the embedding-inducing trees
Ti = (V,E′i) to obstruct a geometric routing algorithm. Link and node failures maybe once more
be of different types:

1. A link e 6∈
⋂

0≤i<k E
′
i fails, thus only a fraction m of all trees Ti become disconnect.

2. A link e ∈
⋂

0≤i<k E
′
i fails, thus all k trees Ti become disconnected.

3. A node v 6∈
⋂

0≤i<k V
(i) fails with V (i) the set of non-leaf nodes of tree Ti. Only a fraction

m of the trees Ti becomes disconnected.

CHAPTER 5. FOREST ROUTING 75

a

b

d e f

c

g h

(a) A shortcut link has failed, this is non-critical:
traffic that was previously routed along 〈e, c, h〉
is rerouted along 〈e, b, a, c, h〉. Note that a path
〈b, e, c, h〉 will never be taken due to way the dis-
tance δ is defined.

a

b

d e f

c

g h

(b) A link in the tree itself has failed: traffic routed
along 〈e, b, a〉 is rerouted over 〈e, c, a〉. Though the
link is part of the tree and the failure is therefore
critical, traffic can be rerouted over a shortcut link.
If such a shortcut would not exist, e would be a
routing void.

Figure 5.8: Failure scenarios for an embedding into T

4. A node v ∈
⋂

0≤i<k V
(i) fails. Now all k trees Ti become disconnected.

In the first and the third type, geometric routing is still theoretically possible due to the existence
of a distance-decreasing path between every source-destination pair in the remaining (k − m)
embeddings Ti. In case two and four, routing once more cannot be guaranteed. Therefore a backup
mechanism is required, such as the gravity-pressure mechanism mentioned in Section 2.5. The FR
mechanism has been equipped with a system that employs the principles used in Cvetkovski &
Crovella (2009). Contrary to their gravity-pressure technique, the FR backup mechanism is based
on the metric space (Tk, ε).

When routing without any sort of backup routing mechanism, a packet traverses a path P based on
a cost function that is computed at every node u ∈ P as Eq. (5.16) dictates. This function is only
calculated for the set S(u), the set of viable neighbouring nodes as explained in Section 5.3.1.2.
When S(u) = ∅, based on Theorem 5.3 a link or node failures must have happened. In this case,
the backup routing mechanism becomes active. Now the whole neighbourhood N(u) is investigated
instead of just a subset S(u). However, when this is done headlong, the routing paths may become
cycles13, thus prudence is prevalent. In case the backup mechanism is active, the keys of the
visited nodes, along with the number of times they were visited, are saved in the header of the
data packet being routed. To avoid cycles, each node will inspect these visitation numbers. A
packet will be forwarded to a node with the lowest visitation number out of all considered nodes.
When multiple nodes have an equal visitation number, the node with the lowest distance will be
selected. Cvetkovski & Crovella (2009) have proven that this mechanism is able to attain 100%
routing success rate even in severe failure scenarios. The algorithm is described in Algorithm 5.5.
When a packet encounters a void (and the backup system is not active), the current ε-distance is
saved in the packet header after which the packet enters the backup mode, until a lower ε-distance
is encountered. This has much in common with the greedy- and face-mode employed by Karp &
Kung (2000) in which also a backup mechanism is used to escape voids. The use of the backup

13Cvetkovski & Crovella (2009) and Section 5.3.1.2

CHAPTER 5. FOREST ROUTING 76

routing mechanism, the effect of using different graph embedding procedures and FR in general
will be tested on fault-tolerance in Section 6.3.6 of the results chapter.

Algorithm 5.5: Backup routing in case of failures
input : current node u knows its neighbours N(u) ∈ V and the current load of its currently

incident edges I(u) ∈ E; a k-dimensional embedding T k is assumed
output: next node v to forward the packet p to

1 receive incoming packet p that has to be forwarded
2 calculate S(u) as in the default HFR mechanism
3 if S(u) = ∅ then
4 if p.backup = false then
5 p.map ← ∅
6 p.backup ← true
7 end
8 if p.map contains entry for K(u) then
9 h← p.map.value(K(u))

10 p.map.value(K(u)) ← h+ 1
11 else
12 p.map.value(K(u)) ← 1
13 end
14 v ← selectNext() (see Algorithm 5.6)
15 else
16 v ← apply default HFR selection procedure
17 end

Algorithm 5.6: Explanation of selectNext() in Algorithm 5.5
input : input of Algorithm 5.5; map p.map containing visitation number of nodes along the

path that p traversed; a destination node d
output: next node v to forward the packet to

1 hmin, εmin ← +∞
2 R(u)← ∅
3 foreach m ∈ N(u) do
4 hm ← 0
5 if p.map contains entry for K(m) then
6 hm ← p.map.value(K(m))
7 else
8 hm ← 0
9 end

10 if hm < hmin ∨ (hm = hmin ∧ ε(m, d) < εmin) then
11 R(u)← ∅
12 εmin ← ε(m, d)
13 hmin ← hm
14 R(u)← R(u) ∪ {m}
15 else if hm = hmin ∧ ε(m, d) = εmin then
16 R(u)← R(u) ∪ {m}
17 end
18 end
19 v ← random element from R(u)

CHAPTER 5. FOREST ROUTING 77

5.5.3 Changing topology

The underlying network may have a dynamic topology in which links are added or removed in
function of the time. This results in the spanning trees, inducing the graph embeddings of the FR
system, losing their connectedness because they do not adapt to the dynamic topology. Consequen-
tially, routing performance deteriorates as time goes on which can be witnessed by an increased
stretch. When facing a severely altered network, even routing voids may be introduced. Therefore
a solution may be to create new embeddings while traffic is being routed through the network.
These new embeddings may then replace older ones. The solution proposed here enables nodes to
initiate a voting process, or a voting process is initiated with a certain frequency, in which nodes
decide whether or not a new spanning tree —and thus a new embedding— should be created.
When a voting is successful, the graph embedding procedure as explained in Section 5.4 is initi-
ated. An important property should be that as the network changes over time, the chances of a
passing vote should increase. A specific implementation of such a voting scheme is left as future
work.

T0 T1 T2 T3 T4

active set

(a) time t0: embeddings T1 and T3 are deteriorated, vote has passed and the
construction of new embeddings is started.

T0 T1 T2 T3 T4

active set

T5 T6

inactive set

(b) time t0 + ∆1: two new embeddings T5 and T6 are created. Nodes start
communicating these sets with their neighbourhood.

T0 T5 T2 T6 T4

active set

(c) time t0 +∆1 +∆2: all nodes have informed their neighbourhood about their
new coordinate sets. Each node replaces T1 and T3 with T5 and T6.

Figure 5.9: The regeneration of two embeddings in a set of five embeddings, thus k = 5 and n = 2.

When using a k-dimensional tree space Tk, induced by k spanning trees T0, T1, . . . , Tk−1 a new
tree Tk is generated accompanied by new coordinates. When the embedding generation procedure
based on Tk has started at a point in time t0, all nodes will wait a certain time ∆1 before they
conclude that the embedding procedure has ended. At this point t0 + ∆1 there exist (k + 1)
embeddings. This is generalizable such that multiple spanning trees may be created in parallel.
Then there might exist (k + n) embeddings at some point, from which there are k active and n

non-active ones. This procedure is illustrated in in Figure 5.9. At the point t0 + ∆1 all nodes will

CHAPTER 5. FOREST ROUTING 78

communicate their new sets of coordinates with their neighbourhood (Figure 5.9(b)).

After some time ∆2 has passed, all nodes should know the n new coordinate sets of their neighbours.
Then after the point (t0 + ∆1 + ∆2) in time, all nodes will discard n of the old embeddings from
the original working set and exchange them with the newly created ones (Figure 5.9(c)). Note that
every node has to exchange the same set of embeddings. A potential issue could be the requirement
to frequently exchange embeddings in a scenario where the network is highly dynamic. This is
due to the fact that node coordinates also represent host identifiers, therefore the Domain Name
System (DNS) should be constantly updated as well. Also hosts should then be constantly informed
about the new coordinate sets. More specifically, the DNS and hosts should be aware of the new
coordinate sets within the time period (∆1 + ∆2) after the start of the generation of the new
embeddings, as hereafter the new coordinate sets will be used for routing purposes. The effects
of using an embedding regeneration scheme on the stretch and the success ratio of FR will be
investigated in Section 6.3.7 of the results chapter.

5.5.4 Recapitulation

In the previous sections, dynamics in the underlying network were examined. First the used
formulas of the FR system were adapted to be able to cope with non-uniform link capacities.
Hereafter, the effect of multiple graph embeddings on the fault-tolerance of geometric routing was
theoretically investigated. From this could be concluded the use of multiple embeddings should
result in passive fault-tolerance, which will be substantiated in the results chapter. As passive
fault-tolerance might not be enough, an existing backup mechanism was tuned to use multiple
embeddings such that 100% routing success rate is guaranteed, even in severe cases of link or node
failures. Lastly the issue of a dynamically changing network topology was tackled by introducing
a mechanism that is able to hot-swap older deteriorated embeddings with newer ones that model
the current network topology more accurately. In the next sections a time and computational
complexity analysis will be given for the FR system.

5.6 Complexity analysis

In this section the time and computational complexity of the designed algorithms will be inves-
tigated theoretically. The analyses presume a synchronous communication model such that two
neighbouring nodes have a clearly defined upper bound for their one-way communication delay,
denoted as ξ+. The lower bound ξ− may always be trivially set to zero. A bounded communication
delay is necessary to detect node failures. When no upper bound is assumed, the time it takes
for a message to travel between two nodes might be infinite. Heartbeat failure detection systems
would therefore be futile. Furthermore it would be impossible to guarantee any upper time bound
for any of the algorithms. We also assume the existence of a maximum processing time, denoted
as µ+. This represents the time required for a node to receive a message, process it and put it on
one of its outgoing lines or simply drop it. Of course the minimal processing time, denoted as µ−,
is again trivially zero.

CHAPTER 5. FOREST ROUTING 79

5.6.1 Coordinate size

According to the FR graph embedding procedures each child of a vertex v ∈ V is labelled with
a number in {0, . . . , (dG(v)− 1)} with dG(v) the degree of v. The root node enjoys a special
treatment and gets the coordinate (0) assigned. Assuming an underlying spanning tree T = (V,E′)
of G = (V,E), then dG(v) is at most (|V |−1). Therefore the binary representation has a complexity
O(log |V |).14 A balanced k-regular tree with k > 2 has a depth complexity of O(log |V |) and the
coordinate lengths can be at most equal to depth of the tree. From this follows that every coordinate
tuple can be represented with at most O(log2 |V |) bits. This poly-logarithmic complexity in |V |
means that the coordinate representations are succinct.15 Furthermore, scale-free networks have
a diameter d ∼ log(log |V |) which means that in the worst-scenario (when the root node has a
distance to another node equal to the diameter d), using a minimal-depth tree building algorithm
such as Algorithm 5.3, the tree depth is at most equal to the network diameter.16 Thus the
complexity of the tuples becomes O(log(log |V |) × log |V |). However when taking into the most
general scenario, a network can have a diameter that is nearly equal to the number of vertices
in the network, namely (|V | − 1). In this worst-case scenario (worst-case network diameter) the
complexity becomes O (|V | × log |V |).

5.6.2 Root election time

To be able to estimate the graph embedding procedure time, the root election time has to be
determined. It is assumed that every node u knows its own key K(u) and the keys K(N(u)) of its
neighbours. This information about neighbouring nodes is stored in a neighbour table. The upper
bound on the root election time (based on the election procedure explained in Section 5.4.1) is

troot ≤ 2d
(
ξ+ + µ+) (5.24)

with d the network diameter. This can be shown as follows. For a graph G = (V,E), assume
an arbitrary node u ∈ V that starts the election procedure, and an arbitrary node r ∈ V , which
will be eventually elected as root node. Assume the shortest path distance between u and r is
δΠ(u, r) = d, which is the maximally possible shortest path distance. After u has initiated the
process, it sends a message to each of its neighboursN(u). Each neighbour receiving such a message
will send it on to its neighbours. This process goes on recursively until all nodes have been reached.
Therefore at least one message will travel along the shortest path Π(u, r). This packet will take a
time t = d (ξ+ + µ+) to reach r, as u itself does not need to process the message. Upon receiving
the message, r will start sending its key K(r) to its neighbours as part of the election procedure.
Because r will eventually be elected, as assumed, all neighbours will send this message further to
their neighbours. One of these backwards travelling messages will flow along the shortest path
Π(r, u), because of the reasons previously mentioned. This also takes a time t. Therefore troot is
maximally 2t = 2d (ξ+ + µ+).

After a time t ≥ troot + ∆, with ∆ an arbitrary time offset, has passed since the initiation of
the election procedure, the nodes assume the election process has converged. Next, the root node

14Korman et al. (2002)
15As defined by Eppstein & Goodrich (2008)
16Cohen & Havlin (2003)

CHAPTER 5. FOREST ROUTING 80

r will start the tree growing procedure. This can be naturally extended to multiple root nodes
that are elected in parallel. It has to be noted that not all root nodes r(i) have to be elected yet
before growing the trees. The growing mechanism for an embedding Ti may start while the root
node election procedure for embedding Tj is still in progress. There is no interdependence between
different graph embedding procedures and as such they may run in parallel.

5.6.3 Tree growing time

For the analysis of the tree growing time complexity, it is assumed the election of root nodes
has already happened. When using a first mode (FM) style assignment, no node will alter the
coordinates it was first assigned. In the breadth-first mode (BFM) style, nodes will let their
coordinates be overridden by coordinates of lower length. In either case the upper bound of the
coordinate assignment time will be the same. It can be said that the assignment time is equal to

tassign = d (tproc + tprop) (5.25)

with d the network diameter, tproc the node processing time required to process the newly received
coordinates and tprop the transmission delay. Thus it can be said that

tassign ≤ d
(
µ+ + ξ+) (5.26)

This can be shown by the fact the root will start spreading the tree coordinates to its neighbours,
which on their turn will spread this information. In the worst case scenario, the root node has
a shortest path that equals d to another node. As coordinates may only be overwritten when
the node’s new position has a lower depth, the coordinate assignment packet reaching a node will
always have travelled less or equal than d hops. This means that the unchronological arrival of
the messages is due to variation of the node processing time or link propagation time. The path
in the tree between a node and the root node is always a shortest path. The value of d can be
correlated to the network size by d ∼ log(log |V |) for scale-free networks.17 Thus for scale-free
networks, the initialization time is of the order of O(log(log |V |)). Of course when dealing with
the worst-case scenario, for a general network, d = |V | − 1. Therefore the worst-case complexity
becomes O(|V |). This analysis holds true for the breadth-first redundant mode (BFRM) in which
also a tree of minimal depth is created. The complexity analysis of RM is left as future work due
to its inherently complex interactions between the cycle avoidance and resolution mechanisms.

5.6.4 Router processing time

As the number of neighbours can be quite large in scale-free networks for some nodes, the number
of calculations needed for forwarding decision making can be equally large. Next, the router
processing time for packet forwarding using the GFR mechanism will be examined. For each
neighbouring node, the distance in k embeddings has to be calculated to generate the ε-distance.
Hereafter the best distance has to be selected, e.g. by a tournament selection algorithm. When
computing this in a sequential way this will take a processing time equal to

17Proven by Cohen & Havlin (2003)

CHAPTER 5. FOREST ROUTING 81

tproc(u) = k · dG(u) · tdist + log2(k · dG(u)) · tcomp ∀u ∈ V (5.27)

for every packet. In this equation tcomp represents the time required to compare two distances and
select the lowest one; tdist stands for the time required to calculate a single distance between two
points in the tree coordinate space; dG(u) represents the degree of the node and k is the number
of embeddings used in the routing system. An advantage is, however, that the routing system is
naturally parallelizable. The system can be broken down in two pieces: the distance calculation
and the computation to select the next node. The distance calculation can be performed in parallel
as the calculations of the different distances are not interdependent. The comparison computation
has to be done after the distance calculations. This processing scheme is depicted in Figure 5.10.

o
d

δ

...

δ

δ

nd−1

n1

n0

min o
next node

(a) parallel packet processing

o
d

δ
n0

δ . . .
n1

δ
nd−1

o
next node

min

(b) sequential packet processing

Figure 5.10: Schematic overview of router architecture: routers can parallelize distance calculations to-
wards a destination node d for the different neighbouring nodes n0, n1, . . . , nd−1. The
comparison operation is the only sequential part.

When computing the distances in parallel, the total time becomes

tproc(u) = tdist + log2(k · dG(u)) · tcomp ∀u ∈ V (5.28)

Herein tdist is not scaling with the number of neighbours or number of embeddings at all, which
leads to a constant complexity. The term with tcomp does scale however, but comparing two values
and extracting the minimum is not a computationally intensive task. For the HFR calculations
Figure 5.11 depicts the serial and parallel steps. The symbols used in the figure are based on
Eq. (5.5), Eq. (5.6) and Eq (5.16). Although many calculations are necessary, it can be seen that
they are very parallelizable: all neighbouring node cost values can be calculated independently.
Note that in this figure we assume α = 1 in Eq. (5.16) and disregard the random selection mech-
anism required when different nodes have an equal cost value. Also it is assumed that a 1-hop
neighbourhood is utilized, for the sake of clarity.

For any neighbour, ε can be calculated in parallel by calculating every δ-value independently for
each embedding. Assuming a node u has dG(u) neighbours and the embedding was k-dimensional,

CHAPTER 5. FOREST ROUTING 82

o
d

...

...

nd−1

nm

n0

n1

...

...

T0

T1

Tp

Tk−1

| ? |

| ? |

2|φ|

+
+

δp

...

...

min ×

(1− γ)

γL̄

εm +

...

Cm

...

min o
next node

Figure 5.11: Overview of sequential and parallel processing steps for the HFR forwarding decision (κ-
calculation not included). The shaded box represents the δ-function based on Eq. (5.5),
which is calculated in parallel for every embedding Ti while the dashed gray box represents
the cost function C based on Eq. (5.16) which is calculated for every neighbour ni with a
destination node d.

then δ has to be calculated dG(u)·k times in parallel. The output δp value is then fed to a minimum
selection mechanism, which is in turn fed to the cost function based on Eq. (5.16). In this step the
link traffic load information is added. Finally once more a minimum selection mechanism is used to
extract the node with the best cost value. This node will become the next node along the routing
path to the destination. What is not depicted in this figure is the calculation of the κ-function for
clarity reasons. This can easily be implemented by only allowing neighbours to enter the second
minimum selection mechanism when one of their δi values is lower than the received δ∗i values (see
Section 5.3.1.2). By doing so, the actual calculation of κ is bypassed using information that has
already been computed. The cost of the load balancing behaviour itself is only minimal as it only
requires the read-out of variable holding the current traffic information of an outgoing link, which
has to be added to the distance calculation. This load balancing component is depicted as the
block γL̄ in Figure 5.11.

5.6.5 Recapitulation

After having explained the main algorithm called Forest Routing (FR) along with its variants, its
time and computational complexity were analysed theoretically. The forwarding decision making
process, which looks very complex at first sight, can be mitigated by exploiting the system’s high
parallelisability. Coordinate lengths can be kept low by employing minimum-depth tree growing
algorithms (FM, BFM, BFRM). On top of that some estimation about the graph embedding
procedure times are given. This can be helpful when determining whether a frequent re-embedding
scheme is feasible or not as presented in Section 5.5.3. In the next chapter the FR system will be
tested and its results will be discussed.

CHAPTER 5. FOREST ROUTING 83

5.7 Conclusion

In this chapter a theoretical base regarding tree-based geometric routing was set up. This served
as a foundation to construct a family of geometric routing algorithms called Forest Routing (FR)
based on the use of multiple greedy graph embeddings. When focusing on low stretch without
any form of load balancing, Greedy Forest Routing (GFR) can be used. Contrary to GFR, Load
Balanced Forest Routing (LBFR) focuses entirely on achieving link load balancing but pays no
attention to the stretch. These two routing schemes are combined into one scheme called Hybrid
Forest Routing (HFR) in which a factor γ can be tuned to focus on a specific combination of stretch
and load balancing behaviour. The correctness of the FR family has been proven and it can be
seen as a advancement of the state-of-the-art of geometric routing as load balancing was still an
open question in scientific literature. To construct the greedy embeddings for FR, four different
graph embedding schemes were developed which can be used in combination with three different
root election mechanisms. These graph embedding procedures all focus to a greater or lesser extent
on achieving low tree redundancy and generating coordinates of low length. Furthermore different
network dynamics scenarios were investigated, such as non-uniform link capacities, fault-tolerance
or a dynamically changing network topology. Also a theoretical complexity analysis was given
regarding the coordinate lengths, the forwarding decision making and the graph embedding pro-
cedure time. In the next chapter, these different aspects of FR will be experimentally investigated
for a large set of parameter values.

Chapter 6

Results and discussion

This chapter presents experiments regarding the behaviour of the mechanisms described in Chap-
ter 5. The different routing mechanisms are tested in the same order as they are presented in the
previous chapter. Every experiment investigates relevant parameter values for various algorithms
and outputs the effect on the stretch and load balancing metrics. For each experiment, the set-up
is written down, followed by the results. Hereafter the results are explained and discussed. Many
experiments are based on the generation of a number random source-destination pairs between
which traffic is simulated, which is executed multiple times. To support the fact that this number
is sufficient, most plots also show the standard deviation over these multiple runs. This standard
deviation shows how much different runs (each based on a number of random source-destination
pairs) vary in their output value. When this variance is sufficiently low compared to the average
value, this indicates that the number of source-destination pairs is sufficient to obtain solid metric
values. Also the number of test iterations for the CAIDA graph experiments is lower than the
number of iterations of the experiments of other graphs. This has been done deliberately due to
large size of the graph. Executing the experiments in the same fashion for the CAIDA graph as
for the other graphs was too computationally expensive.

To simulate routing behaviour a synthetic simulation framework was built. The goal is not to
approximate realistic traffic scenarios, but to illustrate the behaviour of the various algorithms
developed (see Chapter 3). All experiments were executed on the high-performance computer
(HPC), property of Ghent University.

6.1 Forest Routing: greedy variant (GFR)

6.1.1 Sensitivity analysis: tree space dimension k

The GFR mechanism focusses on attaining a low stretch by using an embedding into
(
Tk, ε

)
. Its

only adjustable parameter is the dimension k of the embedding space Tk. By increasing k, more
spanning trees are created which are used to generate different embeddings into T. Remind that
Tk is the aggregation of these individual embeddings. As a result, nodes should have a higher
chance of finding a neighbour that is connected by a shortest path to the destination of the packet
being forwarded. Therefore the logical result of increasing k would be that the stretch goes down.

84

CHAPTER 6. RESULTS AND DISCUSSION 85

Experiment 1. For each value of k between 1 and 30 with a step size of 1, for the scale-free
graphs SF500, SF2k, SF8k, 105 random source-destination pairs were generated. Between these
pairs, Pareto distributed traffic was simulated. The graph embedding was generated in redundant
mode (RM) with highest-key node election (HKE) and randomly assigned keys. This trial was
repeated 10 times for each k value, over which the average and standard deviation of the different
metrics were calculated. For the CAIDA graph, k was drawn from {1, 5, 10, . . . , 30} and the trial
was repeated 5 times for each k-value.

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1 5 10 15 20 25 30

ρ-

k

SF500

SF2k

SF8k

CAIDA

0.00

0.02

0.04

0.06

0.08

σ
ρ

Figure 6.1: GFR: average stretch ρ̄ and its standard deviation σρ set out in function of a varying number
of embeddings k, tested on different scale-free networks as well as the CAIDA graph.

Figure 6.1 shows the average stretch ρ̄ in function of the number of embeddings k. Also the
standard deviation of ρ̄, denoted as σρ is plotted. Asymptotic behaviour ρ̄ → 1 can be noticed
as k → +∞. This can be explained by the availability of more embeddings, which allows more
routing decision making freedom because ε is the minimum of all δi-distances. As a result of this
higher freedom, there is an increased chance that one of the embeddings (or a combination of
embeddings) will lead to a short path between two nodes, resulting in a very low ρ̄. When the
number of vertices increases, the dimension k also needs to rise to maintain the same stretch.
Though k needs to increase for larger graphs, no scalability problems can be observed, which is
indicated by the proximity of the different curves to each other. For the CAIDA graph, even at low
k-values, low ρ̄ values are attained, even though the graph is substantially larger than the largest
scale-free graph, SF8k. A possible explanation for this low stretch is that not many paths have
a lot of alternative paths within the CAIDA graph, therefore diminishing the chance that a path
generated by GFR is not a shortest path.

Figure 6.2 shows the link load balancing metrics βE and λE . As k increases the load balancing
behaviour improves as well, which is remarkable as there is no mechanism actively steering for
traffic load balancing in GFR. These plots thus highlight the passive load balancing behaviour of
GFR. This can be explained by two effects of using multiple embeddings:

CHAPTER 6. RESULTS AND DISCUSSION 86

0.00

0.20

0.40

0.60

0.80

1.00

1 5 10 15 20 25 30

β
E

k

SF500

SF2k

SF8k

CAIDA

0.00

0.02

0.04

0.06

0.08

σ
β

(a) βE-ratio in function of k

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

1 5 10 15 20 25 30

λ
E

k

SF500

SF2k

SF8k

CAIDA

0.0

0.2

0.4

0.6

0.8

σ
λ

(b) λE-ratio in function of k

Figure 6.2: GFR: load balancing metrics for links (βE and λE) set out in function of a varying number
of embeddings k, tested on different scale-free networks as well as the CAIDA graph, along
with their corresponding standard deviations σβ and σλ.

0.00

0.05

0.10

0.15

0.20

1 5 10 15 20 25 30

β
V

k

SF500

SF2k

SF8k

CAIDA

0.00

0.01

0.02

0.03

0.04

σ
β

(a) βV -ratio in function of k

0.0

5.0

10.0

15.0

20.0

25.0

1 5 10 15 20 25 30

λ
V

k

SF500

SF2k

SF8k

CAIDA

0.00

0.50

1.00

1.50

2.00

σ
λ

(b) λV -ratio in function of k

Figure 6.3: GFR: load balancing metrics for nodes (βV and λV) set out in function of a varying number
of embeddings k, tested on different scale-free networks as well as the CAIDA graph, along
with their corresponding standard deviations σβ and σλ.

CHAPTER 6. RESULTS AND DISCUSSION 87

• Because of the existence of multiple roots, the root hotspot behaviour is split among k roots,
therefore improving the overall load balancing.

• Shorter paths are possible, thus decreasing the reliance on the root to act as a transit hub
for traffic between different parts of the network.

For the CAIDA graph nearly no improvement in link load balancing can be noticed. This could
be due to the fact that the graph possesses little alternative paths, as mentioned before. This
is consistent with the CAIDA graph only having approximately a 2-to-1 links-to-vertices ratio,
compared to the scale-free graphs having approximately a 3-to-1 ratio while having larger average
degrees (see Appendix A). Therefore when focussing on attaining a low stretch no load balancing
can be achieved without increasing the stretch. Figure 6.3 shows the node load balancing metrics
βV and λV . Although a similar trend can be witnessed, the difference between the highest and
the lowest metric values is less distinct here. This can be explained by the fact that in a scale-free
network certain high-degree nodes will act as traffic hubs. This causes traffic to be concentrated
around these hubs. This problem does not occur when examining link load balancing as their high
degree makes it easy to distribute traffic on their outgoing links.

When looking at the curves of the different graphs in Figure 6.2 and Figure 6.3, the positive effect
of multiple embeddings on the load balancing behaviour lessens as the graph size increases. This
could be due to the fact that as the graph size increases, the chance of finding an alternative next
hop that has the exact same ε-distance decreases. As GFR always selects the next hop with the
lowest ε-distance, these paths are never taken.

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

1 5 10 15 20 25 30

β
E
 -

 β
E

,Π

k

SF500
SF2k
SF8k
CAIDA

(a)
(
βE − βE,Π

)
for varying k

1.00

1.50

2.00

2.50

3.00

3.50

4.00

1 5 10 15 20 25 30

λ
E
 /
 λ

E
,Π

k

SF500
SF2k
SF8k
CAIDA

(b)
λE

λE,Π
for varying k

Figure 6.4: GFR: load balancing metrics for links, βE and λE , set out in function of a various dimension k
versus their shortest path counterparts, βE,Π and λE,Π, tested on different scale-free networks
as well as the CAIDA graph.

Figure 6.4 and Figure 6.5 show the load balancing behaviour of GFR compared to the passive load
balancing behaviour of shortest path routing. For the β-metric, the offset versus the shortest path
βΠ-metric is chosen, as working with ratios gives a distorted image. For example, when increasing
β from 0.1 to 0.2 this is no different than increasing β from 0.8 to 0.9, although the former has a

CHAPTER 6. RESULTS AND DISCUSSION 88

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

1 5 10 15 20 25 30

β
V
 -

 β
V

,Π

k

SF500
SF2k
SF8k
CAIDA

(a)
(
βV − βV,Π

)
for varying k

1.00

1.20

1.40

1.60

1.80

2.00

2.20

2.40

2.60

1 5 10 15 20 25 30

λ
V
 /

 λ
V

,Π

k

SF500
SF2k
SF8k
CAIDA

(b)
λV

λV,Π
for varying k

Figure 6.5: GFR: load balancing metrics for nodes, βV and λV , set out in function of a various dimen-
sion k versus their shortest path counterparts, βV,Π and λV,Π, tested on different scale-free
networks as well as the CAIDA graph.

far greater ratio. For the λ-metric, the ratio is used to compare GFR with shortest path routing
because it has a range of [0,+∞[, so this is a more natural choice. When looking at the link load
balancing results it can be noticed that at low k-values the load balancing effect is a lot worse than
shortest path routing. At higher k values this difference starts to disappear. The CAIDA graph
has a steady offset versus shortest path routing. For links the offset or ratio does not seem to be
heavily affected by the graph size. For nodes this difference with shortest path routing diminishes
as the graph size increases. These results indicate that GFR scales well with increasing graph size.
When the graph properties are unknown and a k-value has to be chosen, a possible solution is
to test different k-values and monitor current routing performance. Based on this data, k can be
adjusted accordingly. The effects of using different graph embedding procedures in GFR will be
investigated in Section 6.3.4. A general conclusion is that as k goes up, GFR gains more passive
load balancing behaviour and is able to attain a lower stretch.

6.2 Forest Routing: load balanced variant (LBFR)

6.2.1 Sensitivity analysis: tree space dimension k

In LBFR, contrary to GFR, every node attempts to balance traffic on its outgoing links. Therefore
the emphasis lies completely on load balancing, while none on attaining low stretch. As the
dimension k increases, the load balancing metrics should change more severely than with GFR.
Furthermore, a heavy stretch increase should be observed as well.

Experiment 2. For each different k-value between 1 and 30 with a step size of 1, for the scale-free
graphs SF500, SF2k, SF8k, 105 random source-destination pairs were generated. Between these
pairs, Pareto distributed traffic was simulated. The graph embedding was generated in redundant
mode (RM) with highest-key node election (HKE) and randomly assigned node keys. This trial
was repeated 10 times for each k-value, over which the average and the standard deviation of the
different metrics were calculated. For the CAIDA graph, k was drawn from {1, 5, 10, . . . , 30} and

CHAPTER 6. RESULTS AND DISCUSSION 89

the trial was repeated 5 times for each k-value.

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

1 5 10 15 20 25 30

ρ-

k

SF500

SF2k

SF8k

SF8k GFR

CAIDA

0.00

0.20

0.40

0.60

σ
ρ

Figure 6.6: LBFR: average stretch ρ̄ and standard deviation σρ set out in function of a varying number
of embeddings k, tested on different scale-free benchmark networks as well as the CAIDA
graph. To compare, the average stretch ρ̄ of GFR has been set out in function of k for the
graph SF8k.

0.00

0.20

0.40

0.60

0.80

1.00

1 5 10 15 20 25 30

β
E

k

SF500

SF2k

SF8k

CAIDA

0.00

0.01

0.02

0.03

0.04

σ
β

(a) βE-ratio in function of k

0.00

0.50

1.00

1.50

2.00

1 5 10 15 20 25 30

λ
E

k

SF500

SF2k

SF8k

CAIDA

0.00

0.05

0.10

0.15

σ
λ

(b) λE-ratio in function of k

Figure 6.7: LBFR: load balancing metrics for links (βE and λE) set out in function of a varying number
of embeddings k, tested on different scale-free benchmark networks and the CAIDA graph,
along with their corresponding standard deviations σβ and σλ.

Figure 6.6 shows a steep increase in stretch as the number of embeddings k goes up. To compare,
the average stretch of GFR in function of k has also been plotted. The average stretch of GFR for
the other graphs was omitted for clarity reasons. Because more embeddings are available, there

CHAPTER 6. RESULTS AND DISCUSSION 90

0.00

0.20

0.40

0.60

0.80

1.00

1 5 10 15 20 25 30

β
V

k

SF500

SF2k

SF8k

CAIDA

0.00

0.01

0.02

0.03

0.04
σ

β

(a) βV -ratio in function of k

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

1 5 10 15 20 25 30

λ
V

k

SF500

SF2k

SF8k

CAIDA

0.00

0.20

0.40

0.60

0.80

1.00

σ
λ

(b) λV -ratio in function of k

Figure 6.8: LBFR: load balancing metrics for nodes (βV and λV) set out in function of a varying number
of embeddings k, tested on different scale-free networks as well as the CAIDA graph, along
with their corresponding standard deviations σβ and σλ.

exist more forwarding candidates that respect the κ-restriction of LBFR (the κ-function should be
strictly monotonically decreasing along the path followed). Therefore, each node will have more
selection freedom in choosing a next node to forward traffic to. As every node focuses entirely on
balancing the load of its outgoing links, the stretch deteriorates quickly.

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1 5 10 15 20 25 30

β
E
 -

 β
E

,Π

k

SF500
SF2k
SF8k
CAIDA

(a)
(
βE − βE,Π

)
for varying k

0.0

0.5

1.0

1.5

2.0

1 5 10 15 20 25 30

λ
E
 /
 λ

E
,Π

k

SF500
SF2k
SF8k
CAIDA

(b)
λE

λE,Π
for varying k

Figure 6.9: LBFR: load balancing metrics for links, βE and λE , set out in function of a various dimen-
sion k versus their shortest path counterparts, βE,Π and λE,Π, tested on different scale-free
networks as well as the CAIDA graph.

In Figure 6.7 and 6.8 the load balancing metrics β and λ are shown. As k goes up, the system
quickly attains maximum load balancing on its links. The node load balancing metrics converge

CHAPTER 6. RESULTS AND DISCUSSION 91

to a horizontal asymptote. The fact that better load balancing can be attained for links than for
nodes is logical as LBFR focuses solely on link load balancing (see Algorithm 5.1). The node load
balancing behaviour is simply a side-effect. Another explanation is that certain high-degree nodes
in scale-free networks act as traffic hubs. Therefore traffic will naturally concentrate around these
nodes, worsening the node load balancing metric values.

It can also be noticed that when the graph size increases, more embeddings are required to obtain
the same load balancing performance. Also the average stretch that comes with this performance
is higher. This could be due to the load balancing metrics being slightly biased regarding graphs of
different sizes. Another explanation could be that it is simply more difficult to spread traffic evenly
over all links in larger graphs. It could also be due to the lower achievable passive load balancing
behaviour in larger graphs, which is also indicated by the lower passive load balancing performance
of shortest path routing as the graph size increases (the load balancing metrics for shortest path
routing can be seen in the next section in Figure 6.13 and Figure 6.14 as the horizontal dashed
lines).

-0.20

-0.10

0.00

0.10

0.20

0.30

1 5 10 15 20 25 30

β
V
 -

 β
V

,Π

k

SF500
SF2k
SF8k
CAIDA

(a)
(
βV − βV,Π

)
for varying k

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1 5 10 15 20 25 30

λ
V
 /
 λ

V
,Π

k

SF500
SF2k
SF8k
CAIDA

(b)
λV

λV,Π
for varying k

Figure 6.10: LBFR: load balancing metrics for nodes, βV and λV , set out in function of a various
dimension k versus their shortest path counterparts, βV,Π and λV,Π, tested on different
scale-free networks as well as the CAIDA graph.

Figure 6.9 and Figure 6.10 show the difference between shortest path routing and LBFR in terms of
load balancing. At lower k-values shortest path routing performs better regarding load balancing,
but as soon as the cap of k = 2 is crossed the system outperforms shortest path routing. The
CAIDA graph seems to follow a similar trend to SF8k for link load balancing. Node load balancing
for CAIDA does not seem to improve much over shortest path routing as k increases, this is similar
to what could be witnessed with GFR. As with GFR, when the graph properties are unknown and
a k-value has to be chosen, a possible solution is to test different k-values and monitor current
routing performance. Based on this data, k can be adjusted accordingly.

Although the load balancing metrics show that the traffic is distributed equally among all links,
this does not mean that the total traffic in the network is at its lowest point. Because the stretch
increases by a large factor, the total network traffic also goes up. This can be explained as follows:

CHAPTER 6. RESULTS AND DISCUSSION 92

when two nodes send traffic of x Gb/s between each other over a shortest path with 2 hops, this
will result in 2x of total traffic when summing the traffic of all links these nodes use. Thus when
the stretch equals 2, the number of hops becomes 4, which means that the total traffic over the
used links becomes 4x. Therefore focusing on low stretch achieves not a low average path length,
but also keeps down the total traffic in the network. For this reason the stretch should receive a
higher priority than the load balancing behaviour. The effects of using different graph embedding
procedures in LBFR will be investigated in Section 6.3.4. A general conclusion is that as k goes up,
the load balancing performance quickly converges to a horizontal asymptote which is accompanied
by a heavy stretch increase.

6.3 Forest Routing: hybrid variant (HFR)

6.3.1 Sensitivity analysis: trade-off function γ-parameter

The main routing algorithm of this thesis is HFR. For this routing scheme a sensitivity analysis
has been conducted for its parameter γ in Eq. (5.16). Based on the theory in Section 5.3.1.3, as
γ → 0, HFR behaves like GFR. On the other hand, as γ → 1, HFR approximates LBFR. To test
this hypothesis, the effect of shifting γ between its two extremes on the stretch and load balancing
behaviour has been investigated for networks of different types and sizes.

1.00

1.02

1.04

1.06

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ρ-

γ

1.00

1.50

2.00

2.50

3.00

3.50

4.00

ρ-

UD500

UD2k

0.00

0.02

0.04

0.06

σ
ρ

Figure 6.11: HFR: average stretch ρ̄ and its standard deviation σρ set out in function of varying γ-values,
tested on different UDG-type networks embedded into T15.

Experiment 3. For different γ-values from 0 to 1 with a step size of 0.01 and α = 1 for k = 15
embeddings, 105 random source-destination pairs were generated. Pareto distributed traffic was
simulated between them. The HFR system was based on a graph embedding constructed in RM

CHAPTER 6. RESULTS AND DISCUSSION 93

1.00

1.02

1.04

1.06

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ρ-

γ

1.00

1.50

2.00

2.50

3.00

3.50

4.00

ρ-

SF500

SF2k

SF8k

CAIDA

0.00

0.02

0.04

0.06

σ
ρ

(a) scale-free graphs and CAIDA

1.00

1.02

1.04

1.06

1.08

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ρ-

γ

1.00

1.20

1.40

1.60

1.80

2.00

ρ-

R500

R2k

0.00

0.01

σ
ρ

(b) random graphs

Figure 6.12: HFR: average stretch ρ̄ and its standard deviation σρ set out in function of varying γ-values,
tested on different scale-free networks and random networks as well as the CAIDA graph,
embedded into T15.

CHAPTER 6. RESULTS AND DISCUSSION 94

0.00

0.20

0.40

0.60

0.80

1.00

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

β
E

γ

SF500

SF2k

SF8k

CAIDA

0.00

0.01

0.02
σ

β

(a) scale-free graphs and CAIDA

0.00

1.00

2.00

3.00

4.00

5.00

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

λ
E

γ

SF500

SF2k

SF8k

CAIDA

0.00

0.02

0.04

0.06

0.08

σ
λ

(b) scale-free graphs and CAIDA

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

β
E

γ

R500

R2k

0.00

0.01

0.02

σ
β

(c) random graphs

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

λ
E

γ

R500

R2k

0.00

0.01

0.02

σ
λ

(d) random graphs

0.00

0.20

0.40

0.60

0.80

1.00

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

β
E

γ

UD500

UD2k

0.00

0.01

0.02

0.03

σ
β

(e) unit-disk graphs

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

λ
E

γ

UD500

UD2k

0.00

0.05

0.10

0.15

0.20

σ
λ

(f) unit-disk graphs

Figure 6.13: HFR: load balancing metrics for links (βE and λE) and their standard deviation (σβ and
σλ) set out in function of varying γ-values, tested on different networks embedded in T15.
The dashed horizontal lines represent βΠ,E and λΠ,E , the load balancing metrics for shortest
path routing.

CHAPTER 6. RESULTS AND DISCUSSION 95

0.00

0.10

0.20

0.30

0.40

0.50

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

β
V

γ

SF500

SF2k

SF8k

CAIDA

0.00

0.01

0.02
σ

β

(a) scale-free graphs and CAIDA

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

λ
V

γ

SF500

SF2k

SF8k

CAIDA

0.00

0.10

0.20

0.30

σ
λ

(b) scale-free graphs and CAIDA

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

β
V

γ

R500

R2k

0.00

0.01

0.02

σ
β

(c) random graphs

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

λ
V

γ

R500

R2k

0.00

0.01

0.02

σ
λ

(d) random graphs

0.00

0.20

0.40

0.60

0.80

1.00

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

β
V

γ

UD500

UD2k

0.00

0.01

0.02

0.03

σ
β

(e) unit-disk graphs

0.00

0.50

1.00

1.50

2.00

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

λ
V

γ

UD500

UD2k

0.00

0.03

0.06

0.09

σ
λ

(f) unit-disk graphs

Figure 6.14: HFR: load balancing metrics for nodes (βV and λV) and their standard deviation (σβ and
σλ) set out in function of varying γ-values, tested on different networks embedded in T15.
The dashed horizontal lines represent βΠ,V and λΠ,V , the load balancing metrics for shortest
path routing.

CHAPTER 6. RESULTS AND DISCUSSION 96

with HKE based on randomly assigned node keys. For each γ-value this random source-destination
generation process was executed 10 times. Over these 10 runs, the average and standard deviation
of the different metrics were calculated. This experiment is executed on the scale-free networks
SF500, SF2k and SF8k; the random networks R500 and R2k; the UDG-type networks UD500 and
UD2k. For the CAIDA graph the γ-values ranged from 0 to 1 with a step size of 0.05 and the
experiment was ran 5 times for each γ-value.

Figure 6.12(a) show that at low γ-values the stretch is equally low as with GFR for scale-free graphs.
The stretch remains steady for 0 ≤ γ ≤ 0.5. Afterwards, ρ̄ starts to incline quickly as γ → 1. This
can also be seen in Figures 6.11 and 6.12(b). This is consistent with HFR approximating LBFR
as γ → 1 and with HFR approximating GFR as γ → 0. It can also be noticed that the stretch
increases faster for larger graphs. Although it has to be noted that the stretch increase between
graphs of different sizes does not differ a lot for low γ-values.

When investigating Figure 6.13, the βE- and λE-values indicating the load balancing behaviour
for links approach near perfect load balancing for γ → 1. This is consistent with the system
approaching LBFR as γ → 1. The βV - and λV -values converge to the values of LBFR. When the
system has a parameter γ = 0 the HFR exacerbates the same load balancing behaviour as the
GFR system. Something interesting happens when looking to the right of γ = 0. For γ > 0 a step
can be noticed such that β suddenly increases and λ suddenly drops. When looking at Figure 6.11
and Figure 6.12, there is no such a big increase in stretch. This can be explained by the fact that
when a node has to make a forwarding decision, lots of potential candidates will have an equal
distance to the destination. Therefore it does not matter which node to take as next node in terms
of stretch, and as such a random decision will be made. However, when taking into account load
balancing, a huge improvement can be made by prioritizing those links with a low current load.
This holds for all types of graphs, although the step size may vary. This analysis is also applicable
to the node load balancing metrics in Figure 6.14.

In the previous figures the shortest path load balancing metrics are represented as the dashed
horizontal lines. In Figure 6.13 it can be observed that γ = 0 results in load balancing behaviour
that is worse than the passive load balancing behaviour of shortest path routing, which is entirely
consistent with the results in Section 6.1. However, as γ increases, this passive load balancing
behaviour is overcome. The same holds true for the node load balancing behaviour in Figure 6.14
but there the γ-value required to cross the passive node load balancing behaviour of shortest path
routing is higher. It can also be observed that the same γ-value results in worse load balancing
behaviour and a higher stretch for larger graphs, when comparing them to smaller graphs. This is
consistent with the results of GFR and LBFR.
To conclude it can be said that shifting γ to zero results in HFR approximating GFR, while
shifting γ to one leads to HFR approximating LBFR. Between these two values a wide spectrum
of stretch-load balancing combinations exists.

6.3.2 Sensitivity analysis: trade-off function α-parameter

In this section the effect of changing the α-parameter in the cost function Eq. (5.16) is examined.

CHAPTER 6. RESULTS AND DISCUSSION 97

Experiment 4. For different γ-values, ranging from 0 to 1 with a step of 0.01, with different
values for α in {0.1, 0.5, 1, 2.5, 5} and k = 15 embeddings, 105 random source-destination pairs
were generated. Pareto distributed traffic was simulated between them. The graph embeddings were
generated in RM with HKE using randomly assigned node keys. This was conducted 10 times on
the graph SF500, R500 and UD500 for each k- and α-value. For the CAIDA graph each experiment
was run 5 times for γ step value of 0.05.

1.00

1.20

1.40

1.60

1.80

2.00

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ρ-

γ

α=0.1

α=0.5

α=1

α=2.5

α=5

0.00

0.01

0.02

0.03

0.04

σ
ρ

(a) average stretch ρ̄

0.50

0.60

0.70

0.80

0.90

1.00

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

β
E

γ

α=0.1

α=0.5

α=1

α=2.5

α=5

0.00

0.01

0.02

σ
β

(b) link load balancing metric βE

Figure 6.15: HFR: sensitivity analysis of α for an embedding into T15 for the graph SF500.

1.00

1.20

1.40

1.60

1.80

2.00

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ρ-

γ

α=0.1

α=0.5

α=1

α=2.5

α=5

0.00

0.01

0.02

0.03

0.04

σ
ρ

(a) average stretch ρ̄

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

β
E

γ

α=0.1

α=0.5

α=1

α=2.5

α=5

0.00

0.01

0.02

σ
β

(b) link load balancing metric βE

Figure 6.16: HFR: sensitivity analysis of α for an embedding into T15 for the graph R500.

The results are shown in Figure 6.15 for the scale-free graphs, in Figure 6.16 for the random graphs,
in Figure 6.17 for the unit-disk graphs and in Figure 6.18 for the CAIDA graph. Raising α flattens
the first part of the curve (both for ρ̄ and βE), thus making the cost function less sensitive to γ
at low γ-values. It can also be seen that in Figures Figures 6.15(a), 6.16(a), 6.17(a) and 6.18(a)

CHAPTER 6. RESULTS AND DISCUSSION 98

1.00

1.20

1.40

1.60

1.80

2.00

2.20

2.40

2.60

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ρ-

γ

α=0.1

α=0.5

α=1

α=2.5

α=5

0.00

0.02

0.04

0.06

0.08

σ
ρ

(a) average stretch ρ̄

0.00

0.20

0.40

0.60

0.80

1.00

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

β
E

γ

α=0.1

α=0.5

α=1

α=2.5

α=5

0.00

0.02

0.04

0.06

σ
β

(b) link load balancing metric βE

Figure 6.17: HFR: sensitivity analysis of α for an embedding into T15 for the graph UD500.

1.00

1.50

2.00

2.50

3.00

3.50

4.00

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ρ-

γ

α=0.1

α=0.5

α=1

α=2.5

α=5

0.00

0.05

0.10

0.15

0.20

σ
ρ

(a) average stretch ρ̄

0.00

0.20

0.40

0.60

0.80

1.00

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

β
E

γ

α=0.1

α=0.5

α=1

α=2.5

α=5

0.00

0.01

0.02
σ

β

(b) link load balancing metric βE

Figure 6.18: HFR: sensitivity analysis of α for an embedding into T15 for the graph CAIDA.

the steep increase in stretch occurs at higher γ-values compared to Figure 6.12(a). This can be
useful when the stretch should be heavily prioritized by the routing scheme. By using a larger α,
the γ-parameter can be more finely tuned. In Figures 6.15(b), 6.16(b), 6.17(b) and 6.18(b) it can
be seen that the improved load balancing behaviour accompanying larger γ-values also occurs at
higher γ-values when α increases. Figures 6.17 and 6.18, showing the previous metrics for unit-disk
graphs and the CAIDA graph, highlights a slightly different trend than the other plots. Here it
can be witnessed that the curve curvature alters when α varies. This could be an effect originating
from the non-linear tuning (α is an exponent) of the distance and load balancing terms. Next, the
effect of tuning α with a constant γ-value is examined. These results should be consistent with
the previous experiment, thus increasing α should lead to a lower average stretch and worse load
balancing performance.

CHAPTER 6. RESULTS AND DISCUSSION 99

1.00

1.20

1.40

1.60

1.80

2.00

0.1 0.5 1 1.5 2 2.5 3

ρ-

α

SF500

SF2k

SF8k

CAIDA

0.00

0.01

0.02
σ

ρ

(a) scale-free graphs and CAIDA

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.1 0.5 1 1.5 2 2.5 3

β
E

α

SF500

SF2k

SF8k

CAIDA

0.00

0.01

0.02

σ
β

(b) scale-free graphs and CAIDA

1.00

1.05

1.10

1.15

1.20

0.1 0.5 1 1.5 2 2.5 3

ρ-

α

R500

R2k

0.00

0.01

0.02

σ
ρ

(c) random graphs

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.1 0.5 1 1.5 2 2.5 3

β
E

α

R500

R2k

0.00

0.01

0.02

σ
β

(d) random graphs

1.00

1.20

1.40

1.60

1.80

2.00

0.1 0.5 1 1.5 2 2.5 3

ρ-

α

UD500

UD2k

0.00

0.01

0.02

0.03

0.04

σ
ρ

(e) unit-disk graphs

0.00

0.20

0.40

0.60

0.80

1.00

0.1 0.5 1 1.5 2 2.5 3

β
E

α

UD500

UD2k

0.00

0.02

0.04

0.06

σ
β

(f) unit-disk graphs

Figure 6.19: HFR: average stretch ρ̄ and link load balancing βE with their standard deviation (σρ and
σβ) set out in function of varying α-values, tested on different networks embedded into T15.

CHAPTER 6. RESULTS AND DISCUSSION 100

Experiment 5. For different α-values, ranging from 0.1 to 3 with a step of 0.1, with γ = 0.5
and k = 15 embeddings, 105 random source-destination pairs were generated. Pareto distributed
traffic was simulated between them. The graph embeddings were generated in RM with HKE using
randomly assigned node keys. This was conducted 10 times on the graphs SF500, SF2k, SF8k,
R500, R2k, UD500 and UD2k for each α-value. For the CAIDA graph the experiment was run 5
times with an α step value of 0.5.

The results are shown in Figure 6.19. It can be seen that as α increases, the average stretch as well
as βE decreases. This means that increasing α has a positive effect on the average path length and
a negative effect on the load balancing performance of HFR. This is consistent with the results of
Experiment 4. The trend to be witnessed of ρ̄ and βE in function of α is similar for all types of
networks. The effect of changing α seems greater, the larger the graph is. In Figure 6.19(e), much
like in Figure 6.17(a), a distinct trend can be witnessed in which the two curves meet in a single
point. This might be explained by the fact that the stretches of the two unit-disk graphs are very
similar for varying γ-values, which can also be seen in Figure 6.11.
A general conclusion is that as α increases, HFR puts more emphasis on a lower stretch and less
emphasis on load balancing behaviour for γ-values in the mid-range.

6.3.3 Effect of an m-hop neighbourhood

In this section the effect of employing different neighbourhood sizes is investigated as described
in Section 5.3.2. When a node u uses an m-hop neighbourhood it not only has information
(coordinate, key and traffic load information) about its first degree (1-hop) neighbours N1(u),
but also information about the nodes in Ni(u) for 1 ≤ i ≤ m. It is expected that using a larger
neighbourhood increases a node’s chances of finding a lowly congested short path to the destination
for a packet that has to be forwarded. To test the effects on stretch and load balancing the following
experiment has been conducted.

Experiment 6. The effects of anm-hop neighbourhood are tested by generating 105 random source-
destination pairs between which Pareto distributed traffic is simulated. The HFR system used a
graph embedding procedure in RM with HKE and randomly assigned node keys. The parameters in
Eq. (5.16) were set to α = 1 and γ = 0.1. The number of embeddings is k = 15. Both values m = 2
and m = 3 were tested with a cap size ranging from 0 to 500 with a step size of 10. For each cap
size and m-value, the experiment was executed 10 times over which the average value and standard
deviation was calculated for the tested metrics. The experiment was executed on the benchmark
network SF8k.

In Section 5.3.2 the effect of employing a capped neighbourhood versus an uncapped one on the
computational complexity was already shown in Figure 5.6(b). Using a cap prevents the overloading
of the small number of high-degree nodes (see the top of the boxplot) while still dynamically
allowing low-degree nodes to reap the benefits of having a full m-hop neighbourhood at their
disposal. In Figure 6.20 the effects on the load balancing metrics and stretch for different m-values
can be seen, for a varying cap. Note that having a cap equal to zero is the same as m = 1, which
is the default HFR scheme. For a 2-hop neighbourhood with a relatively small cap large gains
in stretch and load balancing can be observed. At a cap of 200 the average path length only is

CHAPTER 6. RESULTS AND DISCUSSION 101

1.000

1.010

1.020

1.030

1.040

1.050

 0 100 200 300 400 500

ρ-

cap

m=3
m=2

(a) average stretch ρ̄

0.35

0.40

0.45

0.50

0.55

0.60

 0 100 200 300 400 500

β
E

cap

m=3
m=2

(b) link load balancing metric βE

Figure 6.20: Effect of routing with HFR combined with anm-hop neighbourhood with varying cap-values
on SF8k. The shaded background behind the curves represents ?̄± σ?.

about 1% larger than the shortest path length. Employing a 3-hop neighbourhood further improves
routing behaviour but the trade-off between link bandwidth sacrificing and state complexity for
stretch or load balancing might not be worth it.

6.3.4 Graph embedding procedures

In this section the effect of using the different embedding procedure modes, redundant mode (RM),
breadth-first mode (BFM) and breadth-first redundant mode (BFRM), in combination with the
different root election procedures, highest-key node election (HKE), highest-degree node election
(HDE) and anchor node election (AE), on the tree redundancy is examined. Also the correlation
of different tree redundancy values, measured by the metric τ (see Definition 5.2), with the load
balancing metric βE and the average stretch ρ̄ is investigated. It is expected that BFM results in
the most tree redundancy (highest τ), RM in the least tree redundancy (lowest τ) and that BFRM
lies somewhere in between.

Experiment 7. The graph embedding procedure modes RM, BFM and BFRM were tested in
combination with the different root election procedures HKE, highest-degree node election (HDE)
and anchor node election (AE). For a different number of embeddings k between 1 and 30 with a step
size of 1, τ was calculated for each mode-election combination. Whenever there was some kind of
randomness present, such as electing root nodes by HKE where the node keys are randomly assigned,
the test was ran 30 times over which the average and the standard deviation were calculated. The
tests were executed on the scale-free benchmark network SF500.

In Figure 6.21 it can be noticed that employing AE yields improvements over HKE when generating
the embedding in BFM, while HDE generates leads to the highest τ -value. When generating the
embeddings in BFRM the difference between the election variants becomes very small. Using HDE
seems to lead to lower τ -values than HKE in BFRM. Generating the embeddings in RM, there
is no additional benefit of using any specific root election mechanism. When heavily focusing on
attaining minimal tree redundancy τ , the effect of the root election mechanism is overshadowed
by the embedding generation mode.

CHAPTER 6. RESULTS AND DISCUSSION 102

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1 5 10 15 20 25 30

τ

k

BFM

BFRM

RM

AE

HDE

0.0

0.1

0.2

0.3

σ
τ

Figure 6.21: Tree redundancy τ in function of k, for the different graph embedding procedures combined
with different root election mechanisms for the graph SF500. The solid lines represent HKE,
the triangles AE and the crosses HDE. The different colours represent the different graph
embedding modes.

In the following experiment the effects of the different graph embedding modes on the assigned
coordinate lengths are investigated. It is expected that a graph embedding mode focussing on
minimizing tree redundancy (RM) would generate a deeper tree, leading to larger coordinates.
The BFM and BFRM should lead to coordinates of nearly equal length as both modes generate
trees of minimal depth.

Experiment 8. The coordinate lengths produced by graph embedding procedure modes RM, BFM
and BFRM with HKE are investigated. The three different modes are executed on the network
SF500 and produce an embedding into T30, thus k = 30 embeddings into T. For each distinct
embedding, the coordinate lengths of all network nodes are gathered and used to calculated boxplot
values.

In Figure 6.22 the coordinate lengths are depicted for every embedding, for the different embedding
modes, by means of a boxplot. When comparing BFM with RM it can be noticed that RM indeed
generates larger coordinates in favour of less tree redundancy (lower τ). The trade-off made is
thus larger storage requirements in the nodes and packet headers1 versus potentially better load
balancing. Also the variance of the coordinate lengths is much larger than when employing BFM
or BFRM. It is remarkable that though the BFRM tree generation model has a τ -value that is
close to the τ -value of RM, it still is a breadth-first algorithm leading coordinate lengths nearly
equal to those obtained by using BFM.

The effect of a lower τ -value on the stretch and load balancing metrics is depicted in Figure 6.23
for GFR. This plot was generated by using the same set-up as Experiment 1 for all embedding

1Remind that the destination coordinates have to be stored in the packet being forwarded.

CHAPTER 6. RESULTS AND DISCUSSION 103

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

c
o

o
rd

in
a

te
 l
e

n
g
th

embedding number

(a) RM embedding

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

c
o
o
rd

in
a

te
 l
e
n
g
th

embedding number

(b) BFRM embedding

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

c
o
o
rd

in
a

te
 l
e
n
g
th

embedding number

(c) BFM embedding

Figure 6.22: Coordinate lengths in function of the embedding number for different embedding generation
modes with HKE root election for the graph SF500. The dots represent the highest value
attained.

CHAPTER 6. RESULTS AND DISCUSSION 104

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 5 10 15 20 25 30

β
E

k

BFM

BFRM

RM

(a) link load balancing βE

1.0

1.1

1.1

1.2

1.2

1.3

1.3

1.4

1.4

1 5 10 15 20 25 30

ρ-

k

BFM

BFRM

RM

(b) average stretch ρ̄

-0.10

-0.05

0.00

0.05

0.10

1 5 10 15 20 25 30

β
E
 o

ff
s
e

t

k

BFRM

RM

(c) offset in βE between non-BFM and BFM for SF8k

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

1 5 10 15 20 25 30

ρ-
 o

ff
s
e

t

k

BFRM

RM

(d) offset in ρ̄ between non-BFM and BFM for SF8k

Figure 6.23: GFR: the effect of the different tree growing modes on stretch and load balancing metrics.
The solid line represents the data for the graph SF500, the dashed line SF8k in the top
figures.

generation modes. In Figure 6.23(a) can be observed that the load balancing metric for links βE
rises slightly for large and small scale-free graphs when using RM compared to BFRM or BFM.
When looking at Figure 6.23(b), it seems that BFRM achieves the lowest average stretch. However,
the gain approaches zero as the number of embeddings increases. In Figures 6.23(c) and 6.23(d)
the difference between the non-BFM and BFM is depicted for SF8k. From this it is clear that
BFRM is an improvement over BFM as the same βE value is reached with a decreased average
stretch ρ̄.

Figure 6.24 shows the effect of the different embedding modes on the stretch and load balancing
behaviour for the LBFR system. For lower k values there is a large increase in βE visible when
using BFRM or RM over BFM. Due to the spreading of the different spanning trees, the curves
converge faster to their asymptote. This means that using a non-BFM tree assignment mode leads
to more possible routing paths. Because of the increased load balancing behaviour, the stretch will
suffer as can be seen in Figures 6.24(b) and 6.24(d). However, the stretch increase of BFRM over
BFM is only marginal at best, while some improvement in load balancing is visible.

When employing GFR, and thus focussing on stretch, the BFRM is able to decrease the stretch
over BFM. When focussing on load balancing with LBFR, the BFM is able to achieve better
load balancing performance. RM is able to perform better in both cases, but requires a complex

CHAPTER 6. RESULTS AND DISCUSSION 105

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 5 10 15 20 25 30

β
E

k

BFM

BFRM

RM

(a) link load balancing βE

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

1 5 10 15 20 25 30

ρ-

k

BFM

BFRM

RM

(b) average stretch ρ̄

-0.1

0.0

0.1

0.2

0.3

0.4

1 5 10 15 20 25 30

β
E
 o

ff
s
e

t

k

BFRM

RM

(c) offset in βE between non-BFM and BFM for SF8k

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1 5 10 15 20 25 30

ρ-
 o

ff
s
e

t

k

BFRM

RM

(d) offset in ρ̄ between non-BFM and BFM for SF8k

Figure 6.24: LBFR: the effect of the different tree growing modes on stretch and load balancing metrics.
The solid line represents the data for the graph SF500, the dashed line SF8k in the top
figures.

cycle avoidance and resolution mechanism. Furthermore it generates larger coordinates with more
variance. Therefore the question whether to use RM or BFRM depends on whether stretch and
load balancing performance are more important than low complexity and consistent coordinates
of low length.

6.3.5 Employing non-uniform link capacities

In this section the effects of using link bandwidth capacities is explored, as explained in Sec-
tion 5.5.1. When link capacities are used, the cost function in Eq. (5.16) is slightly altered to
Eq. (5.22). In the following experiment, the capacities of each link follow a normalized Gaussian
distribution to make sure that there is some form of controlled variance regarding the capacity
values. It is expected that using no congestion awareness scheme leads to severe congestion of
low-capacity links. This should manifest itself in lower success rates as more traffic is sent through
the network. The congestion-aware load balancing (CALB) scheme should be able to spread traffic
over the network regardless of the use of link capacities.

Experiment 9. Every link of the network SF500 is assigned a capacity. The routing mechanism
was assigned a cut-off ω-value of 0.9 for Eq. (5.22). When trying to route traffic such that it would
exceed its capacity, it is dropped. The capacities c are taken randomly from the range [cmin, cmax]

CHAPTER 6. RESULTS AND DISCUSSION 106

and are accepted with a probability

p(c) = exp
(
− (c− µ)2

2σ2

)
(6.1)

which is a normalized Gaussian distribution with a standard deviation σ and a mean µ defined by

σ = 1
4 (cmax − cmin) (6.2)

µ = 1
2 (cmax + cmin) (6.3)

with cmin = 10 and cmax = 100 for this experiment. Routing success was tested for GFR with a
single embedding, default HFR without congestion awareness and HFR with congestion-aware load
balancing (CALB) both with the settings α = 1, γ = 0.1 with k (varying) embeddings generated in
RM with HKE using randomly assigned node keys. With the link capacities set, random source-
destination pairs were generated and Pareto distributed traffic was simulated between them. The
success ratio was monitored as more paths were generated. The better the system is able to cope
with link capacities, the more paths it will be able to generate before breaking down (severe decrease
in success ratio).

0%

20%

40%

60%

80%

100%

 0 50 100 150 200

s
u
c
c
e

s
s
 r

a
ti
o

ζ

CALB
LB
single
greedy
Π

(a) Average success ratio in function of ζ. The dots
shown on the x-axis represent the point where the success
ratio drops below 99%.

98.0%

98.5%

99.0%

99.5%

100.0%

 0 50 100 150 200

s
u
c
c
e

s
s
 r

a
ti
o

ζ

CALB
LB
single
greedy
Π

(b) zoomed in on y-axis of Figure 6.25(a)

Figure 6.25: Average success ratio in function of ζ for different routing schemes on the scale-free graph
SF500.

In this experiment traffic was generated such that the minimum link capacity that may be assigned
is ten times greater than the largest traffic that can be generated by Eq. (3.1) between two nodes.
Thus the routing algorithms have plenty of room to spread traffic such that it fits the within the
link capacities. The path ratio ζ is the number of paths generated divided by the number of vertices
for that graph. ζΠ is this value for a shortest path routing algorithm. Shortest path routing is
used as a baseline for comparing the different algorithms.

CHAPTER 6. RESULTS AND DISCUSSION 107

75%

80%

85%

90%

95%

100%

 0 50 100 150 200

s
u

c
c
e
s
s
 r

a
ti
o

ζ

500

2k

8k

Figure 6.26: Average success ratio for HFR with CALB active for different scale-free graphs in function
of ζ. The dots shown on the x-axis represent the point where the success ratio drops below
99%.

 0

 20

 40

 60

 80

 100

 120

 140

 160

1 5 10 15 20 25

ζ

k

500

8k

(a) 99% success rate cut-off in function of number of em-
beddings for HFR with CALB. The shaded background
behind the curves represents ?̄± σ?.

 0

 5

 10

 15

 20

1 5 10 15 20 25

ζ
 /
 ζ

Π

k

500

8k

(b) ζ divided by the shortest path ζ-value,
ζ

ζΠ
, in func-

tion of k.

Figure 6.27: Comparison between the scale-free graphs SF500 and SF8k when investigating the ζ-value
at 99% success ratio.

In Figure 6.25 it can be seen that as more traffic is send through the network each routing mech-
anism deteriorates when link capacities are set. This is caused by the fact that every link has a
weight which is initially set to zero and increases as traffic is routed through it. Therefore when
link capacities are set the question is not whether traffic will be dropped, but when. It can be
seen that using a single-embedding GFR routing scheme, congestion is not avoided at all. Even
at relatively low ζ-values, the curve drops rapidly. This can be explained by the fact that a traffic
hotspot is created around the root node, leading to heavy congestion at this point in the network
which causes traffic to be dropped. Using multiple embeddings (k = 10) in combination with GFR
heavily increases routing performance, even though no congestion avoidance mechanism is used.
This is consistent with the fact that there now exist multiple roots to distribute the root hotspot
behaviour and that more alternative paths are available. When looking at shortest path routing,
it performs the same as GFR for low ζ-values and converges to the success ratio of HFR without
CALB. The fact that HFR performs better than GFR leads us to believe that load balancing also
inherently avoids congestion. When CALB is active for the HFR mechanism, a huge improvement
can be noticed. This is logical as the routing scheme will now actively employ link capacity in-

CHAPTER 6. RESULTS AND DISCUSSION 108

formation to steer traffic streams. In Figure 6.26 the HFR with CALB is evaluated for different
scale-free graphs. The different positions of the curves could be due to a certain bias in the ζ
function. The most important result is that the curve follows the same trend for all graph sizes.

The ζ-values are set out in function of the number of embeddings k in Figure 6.27. In Figure 6.27(a)
the 99% success rate cut-off point is shown for the graphs SF500 and SF8k. This also means that
the ζ-value seen on the this plot for k = 10 corresponds with the dots in Figure 6.26. The same
trend can also be witnessed: smaller graphs are capable of generating relatively more paths before
breaking down. To further investigate this Figure 6.27(b) shows the ζ value divided by the shortest
path ζ-value (ζΠ). From this plot is clear that although the absolute ζ-value at which 99% success
rate is crossed is lower for larger graphs, the improvement over shortest path routing is larger.
A general conclusion is that using CALB, which is an extension of the default load balancing
scheme, allows HFR to cope with link bandwidth restrictions. This leads to an overall higher
routing success ratio.

6.3.6 Fault-tolerance

In this section the fault-tolerance of the HFR system is evaluated, its resilience towards link and
node failures. The routing success rate and stretch for HFR with and without the backup routing
mechanism (see Section 5.5.2) is evaluated under diverse network failure scenarios.

Experiment 10. The experiment tests HFR (α = 1, γ = 0.1, k = 15) in RM with HKE and
randomly assigned node keys, under a network failure scenario by removing a number of links or
nodes without disconnecting the graph. The number of links or nodes removed starts at 0 and
goes up by 20 at each step. When representing the network by a graph G = (V,E), the highest
number of links that can be removed without disconnecting G is (|E| − |V |+ 1). For every step in
the number of links or nodes failed, the experiment is run 100 times and every time 1000 random
source-destination pairs are generated between which Pareto traffic is simulated. For each of these
1000 pairs the average stretch ρ̄ is calculated as well as its standard deviation σρ. Also the average
success ratio is examined, which is the percentage of generated source-destination pairs having
a void on the routed path between them. To test link fault-tolerance, links are removed with a
probability

p(l) = exp
(

3
(

1− dG(v)o
(dG(v)− 1)

))
(6.4)

with v ∈ V the vertex that has the lowest p(l) probability of both vertices incident to l ∈ E; dG(v)o
the degree of vertex v before removal of any links. This probability makes sure that the link failures
are evenly spread across the network. When dG(v) = dG(v)o (no incident links failed), the failure
probability p(l) goes to one, while it goes to zero for dG(v) = 0 (nearly all incident links failed).
Node fault-tolerance is tested by randomly removing nodes, as well as their incident links, from the
network without disconnecting the graph.

A general trend to be witnessed in Figure 6.28 is that the stretch goes up and the success ratio
decreases (without backup mechanism) as the number of failed links rises. This is explainable by
the fact that the spanning trees Ti used to build the embeddings Ti lose their resemblance to the
underlying network topology due to the link failures. In Figure 6.28(a) can be seen that the average

CHAPTER 6. RESULTS AND DISCUSSION 109

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

0% 5% 10% 15% 20% 25% 30%

ρ-

link failure rate

no back

back

(a) Average stretch ρ̄ with σρ. Note that in case of route
failures, the stretch +∞ is excluded from the data.

94%

95%

96%

97%

98%

99%

100%

0% 5% 10% 15% 20% 25% 30%

s
u

c
c
e
s
s
 r

a
ti
o

link failure rate

back

no back

(b) average success ratio and its standard deviation

Figure 6.28: Average stretch ρ̄ and routing success ratio on SF500 in function of the percentage of deleted
links, with and without the backup routing procedure active. The shaded background
behind the curves represents ?̄± σ?.

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

0% 5% 10% 15% 20% 25% 30%

ρ-

node failure rate

no back

back

(a) Average stretch ρ̄ with σρ. Note that in case of route
failures, the stretch +∞ is excluded from the data.

92%

93%

94%

95%

96%

97%

98%

99%

100%

0% 5% 10% 15% 20% 25% 30%

s
u
c
c
e
s
s
 r

a
ti
o

node failure rate

no back

back

(b) average success ratio and its standard deviation

Figure 6.29: Average stretch ρ̄ and routing success ratio on SF500 in function of the percentage of deleted
nodes, without the backup routing procedure active. The shaded background behind the
curves represents ?̄± σ?.

stretch goes up faster when the backup mechanism is active. This can be explained by the fact
that the stretch of paths with voids (which is actually +∞) is not present in the data. What also
follows from this picture is that the paths taken by the backup mechanism are generally longer
than the paths taken by the default HFR system. In Figure 6.28(b) it is clear that HFR with
the backup mechanism attains 100% routing success rate. Although this is a huge improvement
over the default HFR system, the default system is still able to attain a very high routing success
ratio, even at high link failure rates. In Figure 6.29 the HFR without backup mechanism is shown
but for a varying number of failed nodes. Here it can be seen that the trend is nearly equal in
terms of stretch and success rate, although the slope of the curve is less steep for higher failure
rates. The success rate for a percentage of failed nodes seems to be slightly lower than for the
same percentage of failed links. Also the standard deviation is larger, especially when the backup
routing mechanism is active. This can be explained by the fact that there is a huge difference

CHAPTER 6. RESULTS AND DISCUSSION 110

1.1

1.2

1.3

1.4

1.5

1.6

1.7

0% 5% 10% 15% 20% 25% 30%

ρ-

link failure rate

(a) Average stretch ρ̄ with σρ. Note that in case of route
failures, the stretch +∞ is excluded from the data.

30%

40%

50%

60%

70%

80%

90%

100%

0% 5% 10% 15% 20% 25% 30%

s
u

c
c
e
s
s
 r

a
ti
o

link failure rate

back

no back

no back k=1

(b) average success ratio and its standard deviation

Figure 6.30: HFR with and without backup mechanism for 15 embeddings compared to routing on a
single embedding with GFR for a varying number of failed links. The shaded background
behind the curves represents ?̄± σ?.

30%

40%

50%

60%

70%

80%

90%

100%

1.0 2.0 3.0 4.0 5.0 6.0

p
a
th

s

ρ

0 %
10 %
20 %
30 %

(a) cumulative stretch distribution for various link failure
rates with backup routing system active

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0% 5% 10% 15% 20% 25% 30%

ρ
9
9
th

link failure rate

no back

back

(b) stretch at 99th percentile ρ99th

Figure 6.31: Cumulative number of paths with a certain stretch ρ for different failure ratios and the
stretch ρ99th of the 99th percentile with and without backup system for network SF500.

between a node failing that has a high degree versus a low-degree node failing.

In Figure 6.30 HFR is compared with a single-embedding GFR system without a backup mechanism
for a varying number of failed links. In Figure 6.30(a) it can be noticed that the stretch remains
nearly constant, which is in line with the fact that the infinite stretch of voids is not incorporated in
the data and that the success ratio is low. The GFR system seems unable to take alternative routing
paths, which is logical as there is only one embedding available. Only source-destination pairs for
which there exists no void on their path in this single embedding will be able to communicate.
Therefore the stretch has to remain constant. In Figure 6.30(b) the success rate is compared
with the HFR system for a graph embedding in T15. Here it becomes clear that the HFR system
possesses inherent fault-tolerance, which can be noticed by the huge improvement over the single-
embedding GFR scheme. This can only be explained by the presence of multiple embeddings in
combination with the load balancing scheme which allow traffic to be rerouted around voids along
alternative paths. These rerouted traffic streams come at a cost of an increased stretch.

CHAPTER 6. RESULTS AND DISCUSSION 111

95%

96%

97%

98%

99%

100%

0% 5% 10% 15% 20% 25% 30%

s
u

c
c
e
s
s
 r

a
ti
o

link failure rate

RM

BFRM

BFM

0.0%

0.3%

0.6%

0.9%

σ
s
u
c
c
e
s
s
 r

a
ti
o

Figure 6.32: Fault-tolerance of different coordinate assignment procedures for HFR

Figure 6.31(a) shows the cumulative stretch distribution for different link failure rates with the
backup system active. It shows that as the backup mechanism has to be used more often (which
happens when more links are defect) more paths have a higher stretch. The distribution seems to
shift to the right. This supports that the backup routing mechanism reroutes traffic along paths
that are longer than the paths generated by HFR in case of no failures. In Figure 6.31(b) the
average stretch of the paths with the 1% highest stretch values is depicted in function of a varying
number of failed links. Here can also be noticed that the backup mechanism increases the stretch.

Lastly, Figure 6.32 shows the effect of the different embedding procedure modes on the routing
fault-tolerance of the HFR system. Remind that the RM attained the lowest τ -value, the BFM
the highest τ -value while BFRM lies somewhere in the middle. After having examined the effect of
these different τ -values on the routing stretch and load balancing metrics (see Section 6.3.4), the
effect on the fault-tolerance of the system is investigated. As can be seen, the τ -value correlates
with the routing success ratio. Generating the embedding in RM attains the highest average success
ratio, BFM the lowest while BFRM lies between the two. As a result of a lower tree redundancy,
a failed link is less likely to disconnect a large fraction of the spanning trees.
It can be concluded that using multiple embeddings greatly improves routing fault-tolerance to-
wards link and node failures. A backup routing system can be useful when the network is too
severely deteriorated for the original routing scheme to work. Also it has been shown that having
less tree redundancy, which can be obtained by using a specific graph embedding procedure, leads
to more routing fault-tolerance.

6.3.7 Embedding regeneration procedure

The default HFR system has difficulties coping with a dynamically changing network topology.
Therefore an embedding regeneration model has been added to the baseline algorithm as presented
in Section 5.5.3. This regeneration mechanism will create new embeddings at runtime which

CHAPTER 6. RESULTS AND DISCUSSION 112

will replace older deteriorated embeddings. The reason for this is that the more the network is
altered, the less the embeddings resemble the current topology. When the embedding resembles
the topology less, the stretch and success ratio will deteriorate. Therefore those embeddings that
resemble the altered topology the least are swapped out for newer ones to maintain steady routing
performance over time. The following experiment has been conducted.

Experiment 11. For the network R500, random source-destination pairs were generated. Every
100 pairs one link was swapped, which means its incident vertices were changed randomly. Every
104 generated paths 30% of the 10 embeddings were regenerated. The mechanism used for routing is
HFR with an embedding generation procedure in RM with HKE and randomly assigned node keys.

1.0

1.1

1.2

1.3

1.4

1.5

 0 10k 20k 30k 40k 50k 60k 70k 80k 90k 100k

ρ-

paths

reg
no reg
reg

(a) average stretch ρ̄ in function of the number of paths
generated

90%

91%

92%

93%

94%

95%

96%

97%

98%

99%

100%

 0 10k 20k 30k 40k 50k 60k 70k 80k 90k 100k

s
u
c
c
e

s
s
 r

a
ti
o

paths

reg
no reg
reg

(b) average success ratio in function of the number of
paths generated

Figure 6.33: Tree regeneration for graph R500 for 105 paths generated, with every 100 paths a link being
randomly swapped. Every 104 paths, 30% of the embeddings are regenerated. This can be
noticed by the saw-like trend in blue. Using no embedding regeneration procedure (green
line), makes the routing system vulnerable towards dynamic network behaviour. Contrary
to the red line, which depicts the total average value (stretch and success ratio), the blue
line resets each value at every embedding regeneration.

When swapping links it is important that the characteristics of the network remain the same. When
employing a scale-free network, it would be required that the link swapping should result in another
scale-free network with the same properties, this is however non-trivial. As this experiment’s only
goal is to show the effects of embedding-regeneration, the used benchmark network does not matter.
Therefore a random network (R500) was used because the network properties will not be altered
by random link swapping. In Figure 6.33 the results are shown. It can be seen that not employing
any regeneration scheme leads to a quick incline in average stretch as well as a quick decline in
success ratio. When using a regeneration model that regenerates 30% of the embeddings every 100
link deletions/additions it can be noticed that the stretch converges towards a stable point. This
allows the network to change indefinitely without the routing mechanism deteriorating. Contrary
to the red and green line, the blue line shows the stretch and success ratio after they have been
reset at each re-embedding. This better illustrates the true behaviour of the routing scheme in
combination with an embedding regeneration procedure.
To conclude, an embedding regeneration procedure may help in withstanding highly dynamic
networks with continuously changing topologies. What is left is obtaining a more accurate model
of Internet link deletion/addition frequencies, which is however left as future work.

Chapter 7

Conclusions and future work

7.1 Conclusions

In this thesis the application of geometric routing to inter-AS topologies was investigated. Af-
ter having conducted a literature study, a two-dimensional Euclidean geometric routing system
was constructed named Simulated Annealing Label Trees (SALT). Although this routing system
achieved good results on unit-disk networks, it performed poorly on scale-free graphs, which are
a model for the Internet backbone. After having compared several geometric routing mechanisms
found in literature, routing schemes based on graph embeddings that are induced by spanning trees
yielded the best results. Therefore these types of systems served as a basis for the development
and investigation of more advanced algorithms.

A theoretical geometric routing framework was built to serve as a foundation of the developed
family of routing systems called Forest Routing (FR). First a greedy variant was developed named
Greedy Forest Routing (GFR) which is based on a graph embedding induced by multiple spanning
trees. This variant focuses on attaining a low stretch. As load balancing in geometric routing
is still an open research question, a second variant was developed called Load Balanced Forest
Routing (LBFR). Packet delivery is guaranteed by the postulation and proof of three theorems.
Lastly the most advantageous parts of both variants were united in a scheme called Hybrid Forest
Routing (HFR).

A problem in the Border Gateway Protocol (BGP), the current Internet backbone routing mech-
anism, is load balancing. To be able to balance traffic over network links, routers need to store
multiple routes. This causes severe router memory scalability problems. FR avoids this problem
as each node is able to naturally distribute traffic on its outgoing links. FR truly matches the
large-scale distributed property of the Internet by making sure all routing decision making is done
in a localised manner. As a result, the size of the network barely influences its computational
forwarding complexity. Furthermore FR is able to attain a low stretch, which means that the
average number of hops required for traffic to reach a destination node is nearly equal to that of
shortest path routing algorithms such as BGP. Although geometric routing was not perceived to
be compatible with load balancing strategies in scientific literature, FR proves that low stretch and
load balancing behaviour can go hand in hand. Even more, there is a wide spectrum of possibilities

113

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 114

in combining stretch with load balancing. Moreover, FR can be applied with great success to large
scale-free networks, whereas many current geometric routing algorithms focus on smaller unit-disk
networks.

As a result of the traffic distribution over a node’s outgoing links, fault-tolerance towards node
and link failures emerges naturally. Several experiments have shown that FR does not require the
storage of additional routing paths, as is the case with BGP, because forwarding decisions happen
in an ad-hoc manner. Even at link failure rates as high as 30%, FR is able to attain success rates
over 95%. To be able to cope with severe network disconnection scenarios, FR has been equipped
with a routing backup system, making it possible to achieve a 100% routing success rate even in a
highly deteriorated network.

Furthermore, it has been shown that geometric routing can deal with several types of network
dynamics. FR has a routing decision making algorithm capable of coping with varying link band-
width capacities. Also a routing regeneration procedure has been added to deal with a changing
network where links and nodes are continuously removed and added. Though FR is designed to
excel on scale-free networks, it has been shown to perform well on other types of networks too.

To conclude, FR focuses on different aspects that a future routing scheme for the Internet backbone
requires: (i) scalability: the Internet is vastly growing, and with the surge of Internet of things
applications it will continue to increase in size; (ii) low average path length; (iii) natural load
balancing behaviour; (iv) high routing success rate, even in case of a severely deteriorated network;
(v) flexibility: being able to cope with a wide array of network types and network dynamics. Forest
Routing thus advances the state of the art regarding geometric routing.

7.2 Future work

This thesis work lends itself to further investigation. Some interesting future research directions
are:

• Making the tree regeneration procedure more adaptive to the network at hand. A system
could be developed capable of indicating whether all source-destination host pairs are able
to communicate in a dynamic network. Nodes should then dynamically decide whether or
not to regenerate a fraction of the embeddings. Also the decision of which embeddings to
swap out is a possible research direction. Moreover, algorithms can be developed that are
able to restore the greediness of the embedding in case of failures with minimal coordinate
reassignment.

• Investigating how to improve FR performance in terms of packet processing when little
computational power is available. A possible approach is to only analyse the first packet
of a traffic stream, then calculate a hash label and route subsequent packets based on this
computationally inexpensive label. Also the impact of using coordinate compression schemes
on the computational complexity and storage complexity could be investigated.

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 115

• FR could be deployed in a true distributed setting with emulated traffic in order to test how
well the simulated behaviour approximates emulation. The stability of the traffic streams
generated by the FR forwarding engine with active load balancing could be investigated.
This could be combined with examining how telecom providers could implement FR without
having to abruptly switch to a novel routing system. A possible way of making this happen is
investigating how BGP and FR may coexist in current routers. Furthermore the application
of policies to geometric routing can be examined.

Appendix A

Benchmark networks

This appendix shows the properties of the different synthetic and real networks used as a benchmark
for testing the routing algorithms. In Figure A.1 the node degree distributions of the different kinds
of networks are shown. The scale-free networks are generated by using the algorithm of Barabási
& Albert (1999), the random networks are generated with a certain random connection probability
and the UDG networks are generated with a certain node density. The CAIDA graph of Hyun
et al. (2003) is based on real Internet AS-level data.

 0

 100

 200

 300

 400

 500

 600

 700

 5 10 15 20 25 30 35 40 45 50

c
o
u

n
t

dG

(a) SF2k

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 5 10 15 20 25 30

c
o
u

n
t

dG

(b) UD2k

 0

 50

 100

 150

 200

 250

 300

 350

 400

 2 4 6 8 10 12 14

c
o
u
n
t

dG

(c) R2k

 0

 1000

 2000

 3000

 4000

 5000

 5 10 15 20 25 30 35 40 45 50

c
o
u
n
t

dG

(d) CAIDA

Figure A.1: Node degree dG distribution for the different types of benchmark networks

116

APPENDIX A. BENCHMARK NETWORKS 117

Table A.1: Properties of various benchmark graphs: scale-free graphs

SF500 SF1k SF2k SF8k

vertex count 500 1000 2000 8000
edge count 1467 2962 5962 23950
avg. path length 3.267 3.45 3.756 4.168
diameter 6 6 6 7
avg. degree 5.868 5.924 5.962 5.988
avg. clustering coefficient 0.030 0.038 0.017 0.007

Table A.2: Properties of various benchmark graphs: random graphs

R500 R1k R2k

vertex count 500 1000 2000
edge count 1291 2427 5048
avg. path length 3.966 4.541 4.859
diameter 7 9 10
avg. degree 2.582 2.427 2.524
avg. clustering coefficient 0.010 0.005 0.002

Table A.3: Properties of various benchmark graphs: unit-disk graphs

UD500 UD1k UD2k

vertex count 500 1000 2000
edge count 3889 7804 16163
avg. path length 6.651 9.672 13.480
diameter 17 25 35
avg. degree 15.556 15.608 16.63
avg. clustering coefficient 0.620 0.603 0.605

Table A.4: Properties of the CAIDA graph.

CAIDA

vertex count 22963
edge count 48436
avg. path length 3.842
diameter 11
avg. degree 4.219
avg. clustering coefficient 0.35

Bibliography

L. A. N. Amaral, A. Scala, M. Barthélémy & H. E. Stanley (2000). Classes of small-world networks.
Proceedings of the National Academy of Sciences, 97(21):11149–11152.

A.-L. Barabási & R. Albert (1999). Emergence of scaling in random networks. Science,
286(5439):509–512.

M. Bastian, S. Heymann & M. Jacomy (2009). Gephi: An open source software for exploring and
manipulating networks.

T. Bates, P. Smith & G. Huston (2013). CIDR report for 2 jun 13. CIDR report. URL http:

//www.cidr-report.org/as2.0/.

M. Boguñá, F. Papadopoulos & D. Krioukov (2010). Sustaining the internet with hyperbolic
mapping. Nature Communications, 1(62).

G. Bouabene, C. Tschudin & G. Leduc (2012). Greedy routing and virtual coordinates for future
networks.

J. Bruck, J. Gao & A. A. Jiang (2005). MAP: medial axis based geometric routing in sensor
networks. In Proceedings of the 11th annual international conference on Mobile computing and
networking, MobiCom ’05, pp. 88–102. ACM, New York, NY, USA. ISBN 1-59593-020-5.

T. Bu, L. Gao & D. Towsley (2004). On characterizing BGP routing table growth. Comput. Netw.,
45(1):45–54. ISSN 1389-1286.

T. Bu & D. Towsley (2002). On distinguishing between internet power law topology generators.
In INFOCOM 2002. Twenty-First Annual Joint Conference of the IEEE Computer and Com-
munications Societies. Proceedings. IEEE, volume 2, pp. 638–647 vol.2. ISSN 0743-166X.

S. Bürkle (2003). BGP convergence analysis. Ph.D. thesis, Saarland University.

M. Caesar & J. Rexford (2005). BGP routing policies in ISP networks. Network, IEEE, 19(6):5–11.
ISSN 0890-8044.

N. Carlsson & D. L. Eager (2007). Non-euclidian geographic routing in wireless networks. Ad Hoc
Netw., 5(7):1173–1193. ISSN 1570-8705.

A. Caruso, S. Chessa, S. De & R. Urpi (2005). GPS free coordinate assignment and routing in
wireless sensor networks. In IEEE INFOCOM, pp. 150–160.

118

http://www.cidr-report.org/as2.0/
http://www.cidr-report.org/as2.0/

BIBLIOGRAPHY 119

M. Cha, H. Kwak, P. Rodriguez, Y.-Y. Ahn & S. Moon (2007). I tube, you tube, everybody tubes:
analyzing the world’s largest user generated content video system. In Proceedings of the 7th
ACM SIGCOMM conference on Internet measurement, IMC ’07, pp. 1–14. ACM, New York,
NY, USA. ISBN 978-1-59593-908-1.

H. Chang, R. Govindan, S. Jamin, S. J. Shenker & W. Willinger (2004). Towards capturing
representative AS-level internet topologies. Computer Networks, 44(6):737 – 755. ISSN 1389-
1286.

E. Chávez, N. Mitton & H. Tejeda (2007). Routing in wireless networks with position trees. In
E. Kranakis & J. Opatrny, editors, Ad-Hoc, Mobile, and Wireless Networks, volume 4686 of
Lecture Notes in Computer Science, pp. 32–45. Springer Berlin Heidelberg. ISBN 978-3-540-
74822-9.

Y.-J. Chi, R. Oliveira & L. Zhang (2008). Cyclops: the AS-level connectivity observatory. SIG-
COMM Comput. Commun. Rev., 38(5):5–16. ISSN 0146-4833.

R. Cohen & S. Havlin (2003). Scale-free networks are ultrasmall. Phys. Rev. Lett., 90:058701.

M. Costa, M. Castro, A. Rowstron & P. Key (2004). PIC: practical internet coordinates for distance
estimation. In Distributed Computing Systems, 2004. Proceedings. 24th International Conference
on, pp. 178–187. ISSN 1063-6927.

D. S. J. D. Couto & R. Morris (2001). Location proxies and intermediate node forwarding for
practical geographic forwarding. Technical report, MIT Laboratory for Computer Science.

D. M. Cvetković, M. Doob & H. Sachs (1982). Spectra of graphs. VEB Deutscher Verlag der
Wissenschaften, Berlin, second edition. Theory and application.

A. Cvetkovski & M. Crovella (2009). Hyperbolic embedding and routing for dynamic graphs. In
INFOCOM 2009, IEEE, pp. 1647–1655. ISSN 0743-166X.

F. Dabek, R. Cox, F. Kaashoek & R. Morris (2004). Vivaldi: a decentralized network coordinate
system. SIGCOMM Comput. Commun. Rev., 34(4):15–26. ISSN 0146-4833.

A. Dhamdhere & C. Dovrolis (2011). Twelve years in the evolution of the internet ecosystem.
Networking, IEEE/ACM Transactions on, 19(5):1420–1433. ISSN 1063-6692.

A. B. Downey (2001). Evidence for long-tailed distributions in the internet. In Proceedings of the
1st ACM SIGCOMM Workshop on Internet Measurement, IMW ’01, pp. 229–241. ACM, New
York, NY, USA. ISBN 1-58113-435-5.

D. Eppstein & M. T. Goodrich (2008). Succinct greedy graph drawing in the hyperbolic plane.
Computing Research Repository (CoRR), abs/0806.0341.

M. Faloutsos, P. Faloutsos & C. Faloutsos (1999). On power-law relationships of the internet
topology. SIGCOMM Comput. Commun. Rev., 29(4):251–262. ISSN 0146-4833.

BIBLIOGRAPHY 120

Q. Fang, J. Gao, L. Guibas, V. de Silva & L. Zhang (2005). GLIDER: gradient landmark-based
distributed routing for sensor networks. In INFOCOM 2005. 24th Annual Joint Conference of
the IEEE Computer and Communications Societies. Proceedings IEEE, volume 1, pp. 339–350
vol. 1. ISSN 0743-166X.

G. G. Finn (1987). Routing and addressing problems in large metropolitan-scale internetworks.
Technical report, Information Sciences Institute, Marina del Rey, California.

R. Fonseca, S. Ratnasamy, J. Zhao, C. T. Ee, D. Culler, S. Shenker & I. Stoica (2005). Beacon
vector routing: Scalable point-to-point routing in wireless sensornets. In Proceedings of the
2Nd Conference on Symposium on Networked Systems Design & Implementation - Volume 2,
NSDI’05, pp. 329–342. USENIX Association, Berkeley, CA, USA.

S. Funke & N. Milosavljevic (2007). Guaranteed-delivery geographic routing under uncertain node
locations. In INFOCOM 2007. 26th IEEE International Conference on Computer Communica-
tions. IEEE, pp. 1244–1252. ISSN 0743-166X.

K. Gadkari, D. Massey & C. Papadopoulos (2011). Dynamics of prefix usage at an edge router. In
Proceedings of the 12th international conference on Passive and active measurement, PAM’11,
pp. 11–20. Springer-Verlag, Berlin, Heidelberg. ISBN 978-3-642-19259-3.

J. Gao & L. Zhang (2004). Tradeoffs between stretch factor and load balancing ratio in routing
on growth restricted graphs. In Proceedings of the twenty-third annual ACM symposium on
Principles of distributed computing, PODC ’04, pp. 189–196. ACM, New York, NY, USA. ISBN
1-58113-802-4.

J. Gao & L. Zhang (2009). Trade-offs between stretch factor and load-balancing ratio in routing on
growth-restricted graphs. Parallel and Distributed Systems, IEEE Transactions on, 20(2):171–
179. ISSN 1045-9219.

K.-I. Goh, E. Oh, H. Jeong, B. Kahng & D. Kim (2002). Classification of scale-free networks.
Proceedings of the National Academy of Sciences, 99(20):12583–12588.

M. T. Goodrich & D. Strash (2009). Succinct greedy geometric routing in the euclidean plane. In
Y. Dong, D.-Z. Du & O. Ibarra, editors, Algorithms and Computation, volume 5878 of Lecture
Notes in Computer Science, pp. 781–791. Springer Berlin Heidelberg. ISBN 978-3-642-10630-9.

B. M. Halpern, J. & P. Jakma (2006). Advertising equal cost multipath routes in bgp. RFC page.
URL http://tools.ietf.org/html/draft-bhatia-ecmp-routes-in-bgp-02.

X. He & H. Zhang (2011). On succinct convex greedy drawing of 3-connected plane graphs.
In Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’11, pp. 1477–1486. SIAM.

Y. Hyun, A. Broido & K. Claffy (2003). Traceroute and BGP AS path incongruities. Technical
report, Cooperative Association for Internet Data Analysis (CAIDA).

B. Karp & H. T. Kung (2000). GPSR: greedy perimeter stateless routing for wireless networks.
In Proceedings of the 6th annual international conference on Mobile computing and networking,
MobiCom ’00, pp. 243–254. ACM, New York, NY, USA. ISBN 1-58113-197-6.

http://tools.ietf.org/html/draft-bhatia-ecmp-routes-in-bgp-02

BIBLIOGRAPHY 121

B. N. Karp (2000). Geographic routing for wireless networks. Technical report, Harvard University.

J. Kennedy & R. Eberhart (1995). Particle swarm optimization. In Neural Networks, 1995.
Proceedings., IEEE International Conference on, volume 4, pp. 1942–1948 vol.4.

S. Kirkpatrick, C. D. Gelatt & M. P. Vecchi (1983). Optimization by simulated annealing. Science,
220(4598):671–680.

J. Kleinberg, A. Slivkins & T. Wexler (2009). Triangulation and embedding using small sets of
beacons. J. ACM, 56(6):32:1–32:37. ISSN 0004-5411.

R. Kleinberg (2007). Geographic routing using hyperbolic space. In INFOCOM 2007. 26th IEEE
International Conference on Computer Communications. IEEE, pp. 1902–1909. ISSN 0743-
166X.

A. Korman, D. Peleg & Y. Rodeh (2002). Labeling schemes for dynamic tree networks. In H. Alt
& A. Ferreira, editors, STACS 2002, volume 2285 of Lecture Notes in Computer Science, pp.
76–87. Springer Berlin Heidelberg. ISBN 978-3-540-43283-8.

E. Kranakis, H. Singh & J. Urrutia (1999). Compass routing on geometric networks. In Proc. 11
th Canadian Conference on Computational Geometry, pp. 51–54. Vancouver.

F. Kuhn, T. Moscibroda & R. Wattenhofer (2004). Unit disk graph approximation. In Proceedings
of the 2004 Joint Workshop on Foundations of Mobile Computing, DIALM-POMC ’04, pp. 17–
23. ACM, New York, NY, USA. ISBN 1-58113-921-7.

F. Kuhn, R. Wattenhofer, Y. Zhang & A. Zollinger (2003). Geometric ad-hoc routing: of theory
and practice. In Proceedings of the twenty-second annual symposium on Principles of distributed
computing, PODC ’03, pp. 63–72. ACM, New York, NY, USA. ISBN 1-58113-708-7.

T. Leighton & A. Moitra (2010). Some results on greedy embeddings in metric spaces. Discrete &
Computational Geometry, 44(3):686–705. ISSN 0179-5376.

B. Leong, B. Liskov & R. Morris (2007). Greedy virtual coordinates for geographic routing. In
Network Protocols, 2007. ICNP 2007. IEEE International Conference on, pp. 71–80.

F. Li, S. Chen & Y. Wang (2010). Load balancing routing with bounded stretch. EURASIP J.
Wirel. Commun. Netw., 2010:10:1–10:16. ISSN 1687-1472.

Z. Li & N. Xiao (2010). Weak greedy routing over graph embedding for wireless sensor networks.
Wireless Sensor Network, 2(9):683–688.

P. Mahadevan, D. Krioukov, M. Fomenkov, X. Dimitropoulos, k. c. claffy & A. Vahdat (2006). The
internet AS-level topology: three data sources and one definitive metric. SIGCOMM Comput.
Commun. Rev., 36(1):17–26. ISSN 0146-4833.

Y. Mao, F. Wang, L. Qiu, S. S. Lam & J. M. Smith (2007). S4: Small state and small stretch routing
protocol for large wireless sensor networks. In Proceedings of the 4th USENIX Conference on
Networked Systems Design & Implementation, NSDI’07, pp. 8–8. USENIX Association, Berkeley,
CA, USA.

BIBLIOGRAPHY 122

J. Mikians, A. Dhamdhere, C. Dovrolis, P. Barlet-Ros & J. Solé-Pareta (2012). Towards a statistical
characterization of the interdomain traffic matrix. In R. Bestak, L. Kencl, L. Li, J. Widmer &
H. Yin, editors, NETWORKING 2012, volume 7290 of Lecture Notes in Computer Science, pp.
111–123. Springer Berlin Heidelberg. ISBN 978-3-642-30053-0.

A. Narayanan (2009). A survey on BGP issues and solutions. CoRR, abs/0907.4815.

M. E. J. Newman (2003). The structure and function of complex networks. SIAM Review,
45(2):167–256.

J. Newsome & D. Song (2003). Gem: graph embedding for routing and data-centric storage in
sensor networks without geographic information. pp. 76–88. ACM Press.

R. Oliveira, B. Zhang, D. Pei & L. Zhang (2009). Quantifying path exploration in the internet.
Networking, IEEE/ACM Transactions on, 17(2):445–458. ISSN 1063-6692.

J. Pan, S. Paul & R. Jain (2011). A survey of the research on future internet architectures.
Communications Magazine, IEEE, 49(7):26–36. ISSN 0163-6804.

C. H. Papadimitriou & D. Ratajczak (2005). On a conjecture related to geometric routing. Theo-
retical Computer Science, 344(1):3 – 14. ISSN 0304-3975.

F. Papadopoulos, D. Krioukov, M. Bogua & A. Vahdat (2010). Greedy forwarding in dynamic
scale-free networks embedded in hyperbolic metric spaces. In INFOCOM, 2010 Proceedings
IEEE, pp. 1–9. ISSN 0743-166X.

L. Popa, A. Rostamizadeh, R. Karp, C. Papadimitriou & I. Stoica (2007). Balancing traffic load in
wireless networks with curveball routing. In Proceedings of the 8th ACM international symposium
on Mobile ad hoc networking and computing, MobiHoc ’07, pp. 170–179. ACM, New York, NY,
USA. ISBN 978-1-59593-684-4.

A. Rao, S. Ratnasamy, C. Papadimitriou, S. Shenker & I. Stoica (2003). Geographic routing
without location information. In Proceedings of the 9th annual international conference on
Mobile computing and networking, MobiCom ’03, pp. 96–108. ACM, New York, NY, USA. ISBN
1-58113-753-2.

Y. Rekhter, T. Li & S. Hares (2006). A border gateway protocol 4 (BGP-4). RFC page. URL
http://www6.ietf.org/rfc/rfc4271.

S. Sahhaf, W. Tavernier, D. Colle, M. Pickavet & P. Demeester (2013). Link failure recovery
technique for greedy routing in the hyperbolic plane. Comput. Commun., 36(6):698–707. ISSN
0140-3664.

R. Sarkar, F. Luo, X. Yin, X. D. Gu & J. Gao (2009). Greedy routing with guaranteed delivery
using ricci flows. In In Proc. of the 8th International Symposium on Information Processing in
Sensor Networks (IPSN’09).

Y. Shavitt & T. Tankel (2004). Big-bang simulation for embedding network distances in euclidean
space. IEEE/ACM Trans. Netw., 12(6):993–1006. ISSN 1063-6692.

http://www6.ietf.org/rfc/rfc4271

BIBLIOGRAPHY 123

G. Siganos, S. L. Tauro & M. Faloutsos (2006). Jellyfish: A conceptual model for the AS internet
topology. Communications and Networks, Journal of, 8(3):339–350. ISSN 1229-2370.

L. Subramanian, S. Agarwal, J. Rexford & R. Katz (2002). Characterizing the internet hierarchy
from multiple vantage points. In INFOCOM 2002. Twenty-First Annual Joint Conference of
the IEEE Computer and Communications Societies. Proceedings. IEEE, volume 2, pp. 618–627
vol.2. ISSN 0743-166X.

H. Takagi & L. Kleinrock (1984). Optimal transmission ranges for randomly distributed packet
radio terminals. Communications, IEEE Transactions on, 32(3):246–257. ISSN 0090-6778.

E.-G. Talbi (2009). Metaheuristics : from design to implementation, volume 10 of The Sciences Po
series in international relations and political economy. John Wiley & Sons. ISBN 9780470278581.

M. Tang, H. Chen, G. Zhang & J. Yang (2010). Tree cover based geographic routing with guar-
anteed delivery. In Communications (ICC), 2010 IEEE International Conference on, pp. 1–5.
ISSN 1550-3607.

W. Tavernier (2012). Resilient Future Internet Architectures. Ph.D. thesis, Ghent University.

M. van Steen (2010). Graph Theory and Complex Networks: An Introduction. Maarten van Steen.
ISBN 9081540610.

H. Velayos, V. Aleo & G. Karlsson (2004). Load balancing in overlapping wireless LAN cells. In
Communications, 2004 IEEE International Conference on, volume 7, pp. 3833–3836 Vol.7.

Y. Wang, G. Xie & M.-A. Kaafar (2012). FPC: A self-organized greedy routing in scale-free
networks. In Computers and Communications (ISCC), 2012 IEEE Symposium on, pp. 000102–
000107. ISSN 1530-1346.

B. Yang, J. Xu, J. Yang & M. Li (2010). Localization algorithm in wireless sensor networks based
on semi-supervised manifold learning and its application. Cluster Computing, 13(4):435–446.
ISSN 1386-7857.

Y. Yu, R. Govindan & D. Estrin (2001). Geographical and energy aware routing: a recursive data
dissemination protocol for wireless sensor networks. Energy, 463.

T. Zahariadis, D. Papadimitriou, H. Tschofenig, S. Haller, P. Daras, G. D. Stamoulis &
M. Hauswirth (2011). The future internet. chapter Towards a future internet architecture,
pp. 7–18. Springer-Verlag, Berlin, Heidelberg. ISBN 978-3-642-20897-3.

K. Zeng, K. Ren, W. Lou & P. J. Moran (2009). Energy aware efficient geographic routing in lossy
wireless sensor networks with environmental energy supply. Wirel. Netw., 15(1):39–51. ISSN
1022-0038.

J. Zhang, Y.-p. Lin, M. Lin, P. Li & S.-w. Zhou (2005). Curve-based greedy routing algorithm
for sensor networks. In Proceedings of the Third international conference on Networking and
Mobile Computing, ICCNMC’05, pp. 1125–1133. Springer-Verlag, Berlin, Heidelberg. ISBN 3-
540-28102-9, 978-3-540-28102-3.

BIBLIOGRAPHY 124

J. Zhou, Y. Chen, B. Leong & B. Feng (2010). Practical virtual coordinates for large wireless sensor
networks. In Proceedings of the The 18th IEEE International Conference on Network Protocols,
ICNP ’10, pp. 41–51. IEEE Computer Society, Washington, DC, USA. ISBN 978-1-4244-8644-1.

S. Zhou & R. Mondragón (2004a). The rich-club phenomenon in the internet topology. Commu-
nications Letters, IEEE, 8(3):180–182. ISSN 1089-7798.

S. Zhou & R. J. Mondragón (2003). Towards modelling the internet topology - the interactive
growth model. Computing Research Repository (CoRR), cs.NI/0303029.

S. Zhou & R. J. Mondragón (2004b). Accurately modeling the internet topology. Computing
Research Repository (CoRR), cs.NI/0402011.

List of Figures

1.1 Schematic overview of the Internet architecture . 2
1.2 Number of BGP prefix entries over time . 4
1.3 Geometric routing illustration . 6

2.1 Geometric routing in WSNs . 9
2.2 Different types of geometric forwarding mechanisms 10
2.3 A void in geometric routing . 11
2.4 Face routing illustration . 11
2.5 Gabriel graph and relative neighbourhood graph 12
2.6 Greedy drawing of K1,7 not possible in R2 . 14
2.7 Scale-free node degree distribution . 21
2.8 Rich club phenomenon . 21

3.1 Architecture of the routing simulator . 32
3.2 Architecture of the routing simulator: altered . 34

4.1 SALT: election of anchor nodes . 43
4.2 SALT: embedding of anchor nodes . 44
4.3 SALT: embedding of all nodes . 46
4.4 SALT: embedding after spring-relaxation algorithm 47
4.5 VPCR illustration . 49
4.6 Hyperbolic graph embedding . 50

5.1 Roadmap for explaining Forest Routing . 54
5.2 Embedding into T illustration . 55
5.3 Naive routing with multiple embeddings . 62
5.4 LBFR example . 63
5.5 FR: using an m-hop neighbourhood . 65
5.6 Effect of an m-hop neighbourhood with and without cap on the state and compu-

tational complexity . 66
5.7 FR: cycle introduction by faulty coordinate updates in RM 72
5.8 Failure scenarios for an embedding into T . 75
5.9 Embedding regeneration example . 77
5.10 GFR: schematic overview of the router architecture: sequential and parallel processing 81

125

LIST OF FIGURES 126

5.11 HFR: schematic overview of router architecture . 82

6.1 GFR: stretch in function of k . 85
6.2 GFR: link load balancing behaviour in function of k 86
6.3 GFR: node load balancing behaviour in function of k 86
6.4 GFR: link load balancing behaviour in function of k compared with shortest path

routing . 87
6.5 GFR: node load balancing behaviour in function of k compared with shortest path

routing . 88
6.6 LBFR: stretch in function of k . 89
6.7 LBFR: link load balancing behaviour in function of k 89
6.8 LBFR: node load balancing behaviour in function of k 90
6.9 LBFR: link load balancing behaviour in function of k compared with shortest path

routing . 90
6.10 LBFR: link load balancing behaviour in function of k compared with shortest path

routing . 91
6.11 HFR: stretch in function of γ for UDGs . 92
6.12 HFR: stretch in function of γ for random and scale-free networks 93
6.13 HFR: link load balancing behaviour in function of γ for different types of networks 94
6.14 HFR: node load balancing behaviour in function of γ for different types of networks 95
6.15 HFR: stretch and link load balancing behaviour in function of γ on graph SF500 . 97
6.16 HFR: stretch and link load balancing behaviour in function of γ on graph R500 . . 97
6.17 HFR: stretch and link load balancing behaviour in function of γ on graph UD500 . 98
6.18 HFR: stretch and link load balancing behaviour in function of γ on graph CAIDA 98
6.19 HFR: node load balancing behaviour in function of α for different types of networks 99
6.20 HFR: stretch and link load balancing behaviour for an m-hop neighbourhood . . . 101
6.21 Tree redundancy in function of k for different graph embedding modes 102
6.22 Coordinate lengths in function of different graph embedding modes 103
6.23 GFR: stretch and link load balancing behaviour in function k and different graph

embedding modes . 104
6.24 LBFR: stretch and link load balancing behaviour in function k and different graph

embedding modes . 105
6.25 Average success ratio in function of ζ for different routing schemes 106
6.26 Average success ratio for HFR with CALB active for different scale-free graphs in

function of ζ . 107
6.27 Comparison between the scale-free graphs SF500 and SF8k when investigating the

ζ-value at 99% success ratio . 107
6.28 Link fault-tolerance of GFR and HFR with and without backup mechanism 109
6.29 Node fault-tolerance of GFR and HFR with and without backup mechanism 109
6.30 HFR with and without backup mechanism for 15 embeddings compared to routing

on a single embedding with GFR . 110
6.31 Cumulative distribution of stretch for different failure rates and the stretch of the

99th percentile with and without backup system 110

LIST OF FIGURES 127

6.32 HFR: fault-tolerance of different coordinate assignment procedures 111
6.33 HFR: stretch and success ratio with tree regeneration procedure 112

A.1 Node degree distribution for the different types of benchmark networks 116

List of Tables

1.1 List of commonly used symbols . 7

4.1 Results of SALT applied to different types of networks 48
4.2 Results of comparison between hyperbolic routing, RTP and VPCR 52
4.3 Fraction of identical paths for hyperbolic routing, RTP and VPCR when using the

same spanning tree . 52

A.1 Properties of scale-free benchmark networks . 117
A.2 Properties of random benchmark networks . 117
A.3 Properties of unit-disk benchmark networks . 117
A.4 Properties of CAIDA benchmark network . 117

128

List of Algorithms

4.1 SA: embedding procedure . 45
4.2 Hyperbolic online greedy embedding scheme . 51

5.1 LBFR: forwarding decision making procedure . 60
5.2 FR: embedding procedure in FM . 68
5.3 FR: embedding procedure in BFM . 69
5.4 FR: embedding procedure in RM . 71
5.5 FR: backup routing mechanism . 76
5.6 FR: backup routing mechanism, description of selectNext() 76

129

	Acronyms
	Introduction
	The Internet architecture
	The BGP!
	Geometric routing
	Reader's guide

	Background
	Physical coordinates
	Virtual coordinates
	General concepts
	Iterative graph embeddings
	Structured graph embeddings

	AS-level Internet
	Topology
	Traffic models

	Load balancing
	Mechanisms
	Metrics

	Routing fault-tolerance
	Conclusion

	Routing simulator
	General
	Architecture
	Routing behaviour
	Running experiments
	Modularity and extensibility
	Challenges

	Preliminary research
	Simulated Annealing Label Trees
	Election procedures
	Anchor node election
	Graph embedding procedure
	Relaxation of the embedding
	Results of applying SALT! (SALT!) to generic networks

	Structured embeddings
	VPCR! (VPCR!)
	Hyperbolic routing
	LTR! (LTR!)
	Comparison

	Forest Routing
	Introduction
	Foundation
	Tree space
	Tree metric space
	Routing
	Recapitulation

	Load balancing
	Multiple embeddings
	Extension to an m-hop neighbourhood
	Recapitulation

	Graph embedding procedure
	Root node election
	Graph embedding procedure
	Recapitulation

	Network dynamics
	Non-uniform link capacities
	Fault-tolerance
	Changing topology
	Recapitulation

	Complexity analysis
	Coordinate size
	Root election time
	Tree growing time
	Router processing time
	Recapitulation

	Conclusion

	Results and discussion
	Forest Routing: greedy variant (GFR)
	Sensitivity analysis: tree space dimension k

	Forest Routing: load balanced variant (LBFR)
	Sensitivity analysis: tree space dimension k

	Forest Routing: hybrid variant (HFR)
	Sensitivity analysis: trade-off function -parameter
	Sensitivity analysis: trade-off function -parameter
	Effect of an m-hop neighbourhood
	Graph embedding procedures
	Employing non-uniform link capacities
	Fault-tolerance
	Embedding regeneration procedure

	Conclusions and future work
	Conclusions
	Future work

	Benchmark networks
	Bibliography
	List of Figures
	List of Tables
	List of Algorithms

