
This addendum shows an extension to the original work in [Houthooft et al., 2016]
and [Houthooft and De Turck, 2016], done between the years 2014 and 2016,
which could not be released publicly at the time. We compare an end-to-end seg-
mentation method with a convolutional implementation of the end-to-end SSVM
method described in this chapter. We call this implementation a deep SSVM,
and apply it to a newly constructed autonomous agricultural vehicle segmentation
dataset.

Data Acquisition

As part of this use case, an autonomous agricultural vehicle segmentation dataset
was created in collaboration with Case New Holland (CNH) Industrial. Camera
video data was captured originating from ten di�erent recording campaigns in
the Styria region and Amstetten area in Austria, the Bologna province in Italy,
West-Flanders in Belgium, Pinal County in Arizona, USA, the Indre and Lot-et-
Garonne departments in France, the Thuringia region in Germany, and the North
Brabant region in The Netherlands. To capture the data, di�erent vehicles were
equipped with GoPro Hero 3+ Black cameras, set to a resolution of 1920 ⇥ 1080
pixels and a frame rate of 30 Hz. One of the vehicles used in the campaigns is
shown in Figure 1. A wide-angle field-of-view was chosen to capture additional
surroundings using the following camera angle settings: 69.5� vertical, 118.2�
horizontal, and 133.6� diagonal, with a focal length of 14 mm. The resulting
fisheye e�ect was corrected post-hoc through an inverse transformation.

Figure 1: One of the vehicles used to capture the dataset images; cameras are
mounted on the roof top center and mirrors.

The di�erent captured videos were split into image sequences with a frequency
of 1 Hz. From this set of images, for each measurement campaign, the most
visibly informative and distinctive ones in terms of objects and perspective were
selected. This resulted in a dataset of 595 training and 149 test images, which
were labeled by an external party that was given labeling guidelines. This dataset
is being continuously expanded. For this task, a labeling tool was built that allows
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Figure 2: Illustation of dataset images (columns 1 and 3) and corresponding man-
ual labelings (columns 2 and 4); class list and corresponding occurrence
frequencies in the dataset (top histogram)

operators to load an image, segment it into over-segmentation regions, and assign
classes to these regions. The dataset is illustrated in Figure 2, which shows the list
of classes and their occurrence frequencies, as well as some representative images
together with their corresponding ground truth labelings.

Convolutional Unary Classifier

A first extension proposes to use an alternative method for classifying individual
superpixels. Instead of using a classifier that takes as input only region bag-of-word
features, a convolutional neural network (CNN) is used to learn representations of
each superpixel. The CNN is trained in a supervised fashion, taking 3 ⇥ 84 ⇥ 84
square windows around the median center of each superpixel as input, and outputs
a probability distribution over all possible classes. This CNN has the following
architecture. First, the 3 ⇥ 84 ⇥ 84 windows are downscaled 3-channel 64 ⇥ 64
patches. Next, a convolutional layer of 16 5 ⇥ 5 filters is used, after which
a 2-dim max-pooling operation downsamples the 16 feature maps to 32 ⇥ 32
pixels. Hereafter, 2 additional convolutional layers with max-pooling operations
are applied, with 32 and 64 3 ⇥ 3 filters respectively. Hereafter, 2 subsequent
dense layers of 1024 units are used, which end in an 18-bin softmax output layer.
Additionally, the (x, y) position of the superpixel median centers are added to
the first dense layer, together with the previously mentioned bag-of-word features
(450-dim). The CNN architecture is visually described in Figure 3.

Adam [Kingma and Ba, 2015] is used as a learning scheme to minimize the
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Figure 3: The convolutional neural network architecture used for the unary pre-
dictor which takes as input windows centered around each superpixel

cross-entropy, using minibatches of size 32. The cross-entropy term is weighted by
the inverse of the square root of the class frequencies to correct for class imbalance.
Batch normalization [Io�e and Szegedy, 2015] is applied to every non-output
layer; the layer weights are initialized according to [Glorot and Bengio, 2010];
a dropout [Srivastava et al., 2014] rate of 50% is applied to both dense layers;
all nonlinearities are exponential linear units (ELUs) [Clevert et al., 2015]; label
smoothing of 0.0003 is applied to the softmax output. Furthermore, the dataset
is augmented through random mirroring over the vertical axis. After the unary
convolutional classifier has been trained, the 2-table SSVM is trained as described
previously, using the CNN softmax ouput probabilities as input features. Recently,
related methods have been proposed by [Mostajabi et al., 2015].

Transfer learning To enhance the accuracy of the proposed unary classification
model, transfer learning is used through leverage of a CNN that was pretrained for
classification on the ImageNet dataset [Russakovsky et al., 2015]. In particular, we
use the OverFeat CNN model [Sermanet et al., 2013], which classifies 3⇥232⇥232
images into 1000 distinct ImageNet classes. Although the majority of these classes
do not correspond the classes in our dataset, the goal is to reuse certain learned
features in the segmentation model. This can aid in lowering the overfitting
behavior caused by the bias in the proposed agricultural dataset to particular types
of images. The pretrained CNN model is applied to the same windows as used
by the classifier described in the previous paragraph. The 3 ⇥ 84 ⇥ 84 windows
are scaled up to 3 ⇥ 232 ⇥ 232 to match the pretrained CNN input dimensions.
The class probabilities that are outputted for each superpixel act as an additional
1000-dim feature vector, which is fed into the first dense layer of the CNN model
described in the previous paragraph. This is shown in Figure 3 as the gray-colored
block.

End-to-end Segmentation

A second extension avoids the use of an SSVM model completely. Here, a CNN
is modeled to take as input a complete 3 ⇥ 640 ⇥ 320 image in order to output a
full segmentation. This avoids the need for an over-segmentation preprocessing
method. Its advantage is that the segmentations are no longer limited by errors
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Figure 4: End-to-end convolutional segmentation architecture; the circled plus connections represent the skip-layer connections; the gray box
represents the OverFeat CNN class probabilities according to the window extraction process.
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made by the SLIC procedure. A possible disadvantage is that less prior structure
is imposed through both the superpixel method and the SSVM connectivity graph.
The proposed model is a type of convolutional autoencoder with the following
architecture, which is also visually described in Figure 4. First a stack of convo-
lutional layers is applied to the 3-channel input images, composed of respectively
16, 32, 64, and 128 filters of size 3 ⇥ 3. After each convolutional layer, a 2-dim
max-pooling operation is applied, halving the size of each set of feature maps.

After the convolutional stack, 2 dense layers of respectively 512 and 8000
units are used, which feed into the stack of transposed convolutional layers. This
stack first reshapes the set of 8000 units into a tensor of size 10 ⇥ 20 ⇥ 40, after
which layers of respectively 128, 64, 32, and 16 filters of size 3⇥ 3 are used. After
each of these layers, a 2-dim upscaling layer is applied, doubling the size of each
feature map. The final feature map is fed into a convolutional layer of 16 3 ⇥ 3
filters, after which a linear transformation is applied, which connects to a final
18-bin softmax layer.

To ensure su�ciently detailed segmentations, skip-layer connections are
added that connect the convolutional layers, before their max-pooling operation,
to their transposed convolutional counterparts. As such, the input of each trans-
posed convolutional layer is expanded through concatenation. This is made clear
in Figure 4 by the horizontal dashed connections with the circled plus symbol. All
nonlinear transformations are composed of ELUs [Clevert et al., 2015]; the learn-
ing scheme Adam [Kingma and Ba, 2015] optimizes the cross-entropy augmented
with L2-regularization using minibatches of size 4. The cross-entropy is weighted
by the inverse of the square root of the class frequencies. The training set is aug-
mented through random image mirroring over the vertical axis. Recently a related
method has been proposed by [Long et al., 2015] and [Ronneberger et al., 2015].

Transfer learning Transfer learning is used to leverage of information learned
on the ImageNet [Russakovsky et al., 2015] dataset. Again, we make use of the
OverFeat pretrained CNN model [Sermanet et al., 2013]. However, this time the
model is slided with a fixed stride over 2x upscaled input images and applied to the
resulting 3 ⇥ 232 ⇥ 232 windows. This transformation results in a 1000-dim class
probability vector extracted along a grid of 20⇥40 points. As such, a tensor of size
1000⇥20⇥40 is formed, which is concatenated to the reshaped tensor of the 8000
units of the second dense layer, resulting in a feature map of size 1010 ⇥ 20 ⇥ 40,
shown in Figure 4 by the gray-colored block. The transposed convolutional stack
of layers can now make use of transferred external knowledge in order to make
more informed decisions about the segmentation outputs.

Results and Discussion

Quantitative results for both models on the test dataset are shown in Figures 6
and 5 through confusion matrices. The total set of classes in the dataset was
translated into a set of 18 most interesting class groups. In these matrices, each
row i represents pixels that have a ground truth label of class i, while each column
j represents predictions made by the model as class j. Therefore, in a confusion
matrix, at position (i, j), the number of pixels classified as j but actually belonging
to class i is shown. In this work, rather than showing the actual pixel counts at each
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Figure 5: SSVM with a CNN unary classifier (top) and end-to-end segmentation
model (bottom): pixel-wise precision results on the autonomous agricul-
tural vehicle test dataset, described as a confusion matrix. Class legend:
person (A), tractor (B), harvester (C), implement (D), moving object (E),
nonmoving object (F), power pole (G), fence/hedge (H), tree/shrubbery
(I), public road (J), farm road (K), harvested untilled area (L), unhar-
vested area (M), tilled area (N), swath (O), building (P), water (Q), sky
(R).
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Figure 6: SSVM with a CNN unary classifier (top) and end-to-end segmentation
model (bottom): pixel-wise recall results on the autonomous agricul-
tural vehicle test dataset, described as a confusion matrix. Class legend:
person (A), tractor (B), harvester (C), implement (D), moving object (E),
nonmoving object (F), power pole (G), fence/hedge (H), tree/shrubbery
(I), public road (J), farm road (K), harvested untilled area (L), unhar-
vested area (M), tilled area (N), swath (O), building (P), water (Q), sky
(R).
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position (i, j), we show this count divided by the row sum (in %), which forms
the recall confusion matrix. Hence, the values in each row sum to 100%1. The
diagonal values of the matrix can be interpreted as the per-class accuracy values,
while the o�-diagonal values represent the percentage of pixels (belonging to a
particular class) mispredicted as another class. If we would interpret the ground
truth labels as model predictions, a matrix would be obtained with only values of
100% on its diagonal, and 0% everywhere else. Moreover, we show the precision
confusion matrix, which is composed of the actual pixel counts divided by the
column sum (in %).

These results reveal that the mistakes made by both methods are logically
interpretable, e.g., mistaking types of land or types of vehicle, while their accuracy
results are very similar. When looking at the average accuracy values, the unary
classification model achieves an average precision of 64.7% and an average recall
of 67.7%. The end-to-end model achieves an average precision of 62.6% and an
average recall of 67.7%. The global pixel-wise accuracy, which is the fraction
of correctly classified pixels, is 91.2% for the SSVM method and 90.9% for the
end-to-end method.

Since the quantitative results of both methods are very similar, illustrative
qualitative results on the test dataset are shown in Figure 7. On the one hand,
these results reveal that the SSVM method tends to overshoot when the over-
segmentations are inaccurate, while the end-to-end method su�ers from no such
limitation. On the other hand, when the superpixels do align, they nicely delineate
objects, leading to highly accurate segmentations. This is true even when the
actual ground truth labels do not correctly delineate the objects. Although the
quantitative results of both models are very similar, it can be noticed that the
end-to-end segmentation method is capable of correctly predicting objects that are
very far away, which is its main advantage over the over-segmentation method.

The results of both models highlight their capability to operate in highly clut-
tered environments by achieving accurate image segmentations. Such predictions
could form a basis for steering autonomous vehicles towards particular types of
land, e.g., unharvested fields, or to avoid dangerous areas, e.g., public roads. The
accurate segmentation of trees and shrubbery can aid in marking field boundaries
or in avoiding collisions, as does the segmentation of objects in general, e.g., power
poles. Segmenting sky regions can prove to be helpful in horizon estimation, or to
avoid running other expensive algorithms on image regions of which we know a
priori that they do not contain important information, e.g., when trying to localize
particular objects.

Deep Structural Support Vector Machine

We propose the use of an SSVM with an underlying grid-structured graphical
model. This model connects each pixel to its four adjacent neighbors in the left,
top, right, and bottom directions. It uses a unary energy function f (x, y; ✓)modeled
by a convolutional neural network (CNN) which outputs an energy value for each
distinct class. The interaction energy function h(x, y; �) is modeled by the same
CNN, except that it uses a di�erent output branch that ends in two distinct output
blocks of 182 values. Once 182 outputs for the horizontal connections (left and

1Note that due to rounding errors in the figures, the sum may not be exactly 100%.
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Figure 7: SSVM combined with the unary CNN classifier: illustration of seg-
mented test images from the autonomous agricultural vehicle dataset;
visible class legend: public road (green), sky (red), private road (pink),
unharvested area (orange), human (white), tractor (black), building or
implement (purple), swath (yellow), harvester (bright yellow), harvested
area (blue), trees/shrubbery (gray), generic nonmoving object (cyan),
power pole (dark red), car (dark orange), fence/hedge (khaki)
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Figure 8: End-to-end segmentation: illustration of segmented test images from
the autonomous agricultural vehicle dataset; visible class legend: pub-
lic road (green), sky (red), private road (pink), unharvested area (or-
ange), human (white), tractor (black), building or implement (pur-
ple), swath (yellow), harvester (bright yellow), harvested area (blue),
trees/shrubbery (gray), generic nonmoving object (cyan), power pole
(dark red), car (dark orange), fence/hedge (khaki)
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right), once 182 outputs for the vertical connections (top and bottom). The right
column and bottom row are stripped away from both branch outputs, to match the
actual grid layout. The CNN factors are composed of stack of convolutional layers,
feeding into a set of dense layers, feeding into a stack of transposed convolutional
layers, which output the SSVM energy values. The whole system is trained end-to-
end using back-propagation and ↵-expansion for loss-augmented inference. This
means, rather than applying the unary and pairwise neural networks as presented
in this chapter separately for each individual unary or pairwise connection, that
the CNN outputs all SSVM energy values simultaneously.

The model has the following architecture, which is also shown visually in
Figure 9. The SSVM graphical model is a grid that connects adjacent pixels, as
described previously, consisting of V

n

= 160 ⇥ 80 nodes and E

n

= (160 ⇥ 79) +
(159 ⇥ 160) undirected edges. It takes as input 3 ⇥ 640 ⇥ 320 images downscaled
to 3 ⇥ 160 ⇥ 80, and outputs a 160 ⇥ 80 segmentation. This means that both
the unary features x

U

i

as well as the interaction features x

I

i

are the complete 3-
channel input images. We specifically use downscaled images of 160 ⇥ 80 pixels
to reduce the processing time, since our ↵-expansion algorithm implementation
cannot be run parallely on a GPU. A possible solution to this is described in
[Vineet and Narayanan, 2009].

The CNN consists of consecutive convolutional layers with 16, 32, and 64
filters of size 3 ⇥ 3. After each layer, a 2-dim max-pooling operation is applied,
halving the size of each set of feature maps. Next, 2 dense layers of respectively
512 and 2000 units are used, which feed into the stack of transposed convolutional
layers. The set of 2000 dense outputs is first reshaped into a tensor of size
10⇥ 10⇥ 20, after which layers of respectively 128, 32, and 32 filters of size 3⇥ 3
are used. Each of these layers is followed by a 2-dim upscaling layer, doubling the
size of each feature map.

The final feature map is fed into two parallel transposed convolutional layers,
one with 18 3 ⇥ 3 filters and one with 2 ⇥ 182 filters. The first output branch feeds
into the a�ne unary energy layer, with output size 18⇥ 160⇥ 80, while the second
branch feeds into an a�ne interaction energy layer, with output size 324⇥160⇥80
(which is cropped to match the actual interaction grid). Skip-layer connections
are added that connect the convolutional layers, before their max-pooling opera-
tion, to their transposed convolutional counterparts. As such, the input of each
transposed convolutional layer is expanded through concatenation. This is made
clear in Figure 9 by the horizontal dashed connections with the circled plus sym-
bol. All nonlinear transformations are composed of ELUs [Clevert et al., 2015];
the learning scheme Adam [Kingma and Ba, 2015] optimizes the proposed SSVM
objective function, using minibatches of size 6. The loss function�(·, ·) is weighted
by the inverse of the class frequencies. Transfer learning is used through concate-
nation of the 1000 ⇥ 20 ⇥ 40 feature tensor with tensor of feature maps after the
first upscaling layer.

Results and Discussion

This section demonstrates that the presented end-to-end SSVM training method
can be used in conjunction with highly complex underlying neural factor models.
The prediction accuracy between the deep SSVM and an end-to-end segmentation
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Figure 9: Deep SSVM using a convolutional architecture; the circled plus connections represent the skip-layer connections; the gray box represents
the OverFeat CNN class probabilities according to the window extraction process.
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Figure 10: Deep SSVM (top) and end-to-end segmentation model (bottom): pixel-
wise precision results on the autonomous agricultural vehicle test
dataset, described as a confusion matrix. Class legend: person (A),
tractor (B), harvester (C), implement (D), moving object (E), nonmov-
ing object (F), power pole (G), fence/hedge (H), tree/shrubbery (I),
public road (J), farm road (K), harvested untilled area (L), unharvested
area (M), tilled area (N), swath (O), building (P), water (Q), sky (R).
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Figure 11: Deep SSVM (top) and end-to-end segmentation model (bottom): pixel-
wise recall results on the autonomous agricultural vehicle test dataset,
described as a confusion matrix. Class legend: person (A), tractor (B),
harvester (C), implement (D), moving object (E), nonmoving object
(F), power pole (G), fence/hedge (H), tree/shrubbery (I), public road
(J), farm road (K), harvested untilled area (L), unharvested area (M),
tilled area (N), swath (O), building (P), water (Q), sky (R).
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model that uses the exact same convolutional base (but without the lower branch,
the graphical model (SSVM), and with a softmax output of 18 classes rather than
an a�ne transformation (linear) into 18 unary energy values) is compared through
precision and recall on the autonomous agricultural test dataset. The deep SSVM
is compared to an end-to-end segmentation model with the same architecture as
the deep SSVM.

The results are shown in Figures 10 and 11 through confusion matrices. The
mistakes made by both models are highly interpretable, for example incorrectly
classifying ‘fence/hedge’ as ‘tree/shrubbery’. On average, it can be noticed that the
deep SSVM method attains a slightly lower recall (53.3% compared to 55.8%), but
a higher precision (63.6% compared to 56.7%) than the end-to-end segmentation
model. This means that if the deep SSVM model makes a prediction, on average,
it is more likely to be correct than its competitor. However, this leads to a slightly
lower detection rate for particular classes. When looking at the global accuracy,
which is the total number of correctly classified pixels, the end-to-end segmentation
model attains an accuracy of 90.5%, while the deep SSVM scores slightly higher
with 92.3%. These results indicate that the deep SSVM model is capable of adding
value to the segmentation process. However, the most important point to take away
from these results is that they reinforce the conclusion made previously, namely
that the end-to-end SSVM training method can serve as a foundation for highly
complex underlying models.
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