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Introduction



Company focus: casual mobile games
Main product: “Anipop”

Extremely popular (>100M users/month)
Generates TBs of data each day

Al Lab founded in 2018



Al Lab: Goals & Strategy
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Open-loop to Closed-loop Game Design

@ Product-player preferences mismatch
@ Designers slow in adapting to changing player behavior

@ Lower player satisfaction
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Open-loop to Closed-loop Game Design

@ Some adaptation to changing player preferences
@ Low granularity

@ Hard to maintain over time



Open-loop to Closed-loop Game Design
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Open-loop to Closed-loop Game Design

@ Immediate adaptation to changing player preferences
@ High granularity

@ Maintains itself through objective function optimization



One of our projects:

Deep Learning for
Game Difficulty Adjustment



From Hypothesis to Production

Experimentation Platform
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Hypothesis Validation Prototype Al production
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Data Science Platform Al Platform




Game Difficulty Adjustment

@ Hypothesis: preferred difficulty varies across users & time.

@ Validation: difficulty correlates with LTV/retention.

@ Prototype + Production: adjust difficulty dynamically via ML.




Problem Formulation
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Problem Formulation

Fixed gameplay
for all users

manual rules

Personalized gameplay
for each user

machine learning




Problem Formulation

Gameplay modification: Action sequences
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Objective: Rewards = player revenue/retention
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Problem Formulation

Gameplay modification: Action sequences
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Objective: Rewards = player revenue/retention




Deep Reinforcement Learning

@ Reinforcement learning defines problem via high-level objective
@ Deep learning is a paradigm for building flexible solutions

@ Deep reinforcement learning integrates both above points



Problem Formulation

Reinforcement Learning:

e \What action a to take in

state s action a

state s to optimize
the expected reward E[r]?

reward r

e For example, video game:
o state s = screen
o action a = controller
o reward r = score



Problem Formulation

Reinforcement Learning:

e \What action a to take in
state s to optimize
the expected reward E[r]?

e For example, video game:
o state s = screen
o action a = controller
o reward r = score
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Reinforcement Learning

reward r

item used?
play again?
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Reinforcement Learning
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Reinforcement Learning

[ 4
- - Rast User
Behaviok _
Game ~

-

state s

P ¢

- Embedding

Policy

—

action a

reward r

item used?
play again?




Deep Learning

@ Paradigm shift rather than new technique
@ Ability to optimize any sort of target using any type of data flow

@ Extremely flexible in fusing and integrating heterogeneous data
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Reinforcement Learning
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Deep Reinforcement Learning
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In Practice: Key Problems

@ ML good at optimizing short-term targets:
How do short-term targets relate to long-term objectives?
@ ML good at optimizing on fixed dataset:

What when the data regime is highly non-stationary?



Optimization Horizon

@ Often it is easy to define short-term targets:

Did the user play another in-game level?
Did the user make an in-app purchase?

@ But how does this lead to long-term objectives?

User engagement over the next year
Life-time value of player



Optimization Horizon

Retention
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Optimization Horizon

@ This can be solved through RL by formulating the right objective
@ Objective is a sum of individual short-term targets over a time horizon

@ However problem remains in how to accurate model this objective



Exploration — Exploitation Duality

Training

Dataset

@ Traditionally, ML works on a fixed dataset

@ Practical RL in constant motion: model generates future dataset



Exploration — Exploitation Duality

@ Rewards might be sparse: learn from
long-term signal

@ + dynamic interaction with players:
inherently nonstationary data regime

@ Core problem: trading off
exploration vs exploitation
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Exploration — Exploitation Duality
@ Approximate Bayesian approach to capture model uncertainty

@ Solving exploitation (A) vs. exploration (B) problem.



Model: Bootstrapped Contextual Bandits

action
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System Architecture: Gameplay Embeddings
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System Architecture: Gameplay Embeddings

() ) User Training Pipeline
Behavior



System Architecture: Gameplay Embeddings
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Technology Stack Samples
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Conclusions



@ Deployment of ML can significantly improve revenue and engagement
@ Nonstationary data presents difficult optimization problem

@ Relationship between short-term and long-term metrics hard to identify






