

Generating the Best Game Experience through AI

Rein Houthooft

Introduction

Company focus: **casual** mobile games

Main product: "Anipop"

Extremely popular (>100M users/month)

Generates **TBs of data** each day

Al Lab: Goals & Strategy

Sparse feedback

ents

Product-player preferences mismatch

Designers slow in adapting to changing player behavior

Lower player satisfaction

Happy Elements

Some adaptation to changing player preferences

Low granularity

Hard to maintain over time

- Immediate adaptation to changing player preferences
- High granularity
- Maintains itself through objective function optimization

One of our projects:

Deep Learning for Game Difficulty Adjustment

From Hypothesis to Production

Game Difficulty Adjustment

Hypothesis: preferred difficulty varies across users & time.

Validation: difficulty correlates with **LTV/retention**.

Prototype + Production: adjust difficulty dynamically via ML.

Gameplay modification: Action sequences

Gameplay modification: Action sequences

Gameplay modification: Action sequences

Gameplay modification: Action sequences

Gameplay modification: Action sequences

Deep Reinforcement Learning

Reinforcement learning defines problem via high-level objective

Deep learning is a **paradigm** for building flexible **solutions**

Deep reinforcement learning integrates both above points

Reinforcement Learning:

 What action a to take in state s to optimize the expected reward E[r]?

- For example, video game:
 - state s = screen
 - action a = controller
 - reward r = score

Reinforcement Learning:

 What action a to take in state s to optimize the expected reward E[r]?

- For example, video game:
 - state s = screen
 - action a = controller
 - reward r = score

Deep Learning

Paradigm shift rather than new technique

Ability to **optimize any sort** of target using **any type** of data flow

Extremely **flexible** in fusing and integrating **heterogeneous data**

	Α	В	С	D	E
1	Country 💌	Salesperson 💌	Order Date 💌	OrderID 💌	Order Amount 💌
2	UK	Buxton	3/01/2018	10954	755
3	UK	Buxton	8/01/2018	10922	495
4	UK	Buxton	4/01/2018	10899	510
5	UK	Buxton	21/01/2018	10874	582
6	UK	Buxton	11/01/2018	10872	761
7	UK	Buxton	16/01/2018	10870	466
8	UK	Buxton	14/01/2018	10869	946
9	UK	Buxton	7/02/2018	10866	935
10					
11					
Buxton Maxwell Jarvis Everton Other Stuff					

Deep Learning

-20-15-10-5 10 15 20 10

Deep Reinforcement Learning

In Practice: Key Problems

How do short-term targets relate to long-term objectives?

ML good at optimizing on fixed dataset:

What when the data regime is highly non-stationary?

Often it is easy to define **short-term targets**:

Did the user play another in-game level? Did the user make an in-app purchase?

But how does this lead to **long-term objectives**?

User engagement over the next year Life-time value of player

Retention

Revenue

Retention

Objective is a **sum of individual short-term targets** over a time horizon

However problem remains in how to accurate model this objective

Traditionally, ML works on a **fixed dataset**

Practical RL in **constant motion**: model generates

- Rewards might be sparse: learn from long-term signal
- + dynamic interaction with players: inherently nonstationary data regime
- Core problem: trading off exploration vs exploitation

- Rewards might be sparse: learn from long-term signal
- + dynamic interaction with players: inherently nonstationary data regime
- Core problem: trading off exploration vs exploitation

- Rewards might be sparse: learn from long-term signal
- + dynamic interaction with players: inherently nonstationary data regime
- Core problem: trading off exploration vs exploitation

Approximate Bayesian approach to capture model uncertainty

Solving exploitation (A) vs. exploration (B) problem.

Model: Bootstrapped Contextual Bandits

Game Client

Game Client

Technology Stack Samples

Conclusions

- Deployment of ML can significantly improve revenue and engagement
- **Nonstationary** data presents **difficult optimization** problem
- **Relationship** between **short**-term and **long**-term **metrics** hard to identify

THANKS

http://en.happyelements.com/ai